DOI QR코드

DOI QR Code

A Study on the Performance Predictions of Twin Sail Drone

트윈 세일 드론의 성능추정에 관한 연구

  • Ryu, In-Ho (Graduate School of Mokpo National Maritime University) ;
  • Yang, Changjo (Division of Marine Engineering System, Mokpo National Maritime University) ;
  • Han, Won-heui (Division of Marine Engineering System, Mokpo National Maritime University)
  • 류인호 (목포해양대학교 기관시스템공학과) ;
  • 양창조 (목포해양대학교 기관시스템공학부) ;
  • 한원희 (목포해양대학교 기관시스템공학부)
  • Received : 2022.06.17
  • Accepted : 2022.08.29
  • Published : 2022.08.31

Abstract

Recently, marine surveys using unmanned ships are attracting attention, and research on small unmanned ships using sails is on the rise. Sail drones can be used for marine surveys, monitoring, and pollution management. Therefore, in this study, using the method of estimating the ship speed for twin sail drones, the optimal conditions for sailing are checked, and the performance to be considered in the initial design stage, such as the motion performance and resistance of the sail drone. Consequently, the twin sail drone had a speed lower than 2.0 m/s, and the stability satisfied the rule by DNV. In addition, the maximum speed at an angle of attack of 20° at TWA 100° was 1.69 m/s and that at an angle of attack of 25° at TWA 100° was 1.74 m/s.

최근 무인선을 활용한 해양 조사가 주목을 받고 있으며, 특히 세일을 이용한 소형 무인 드론에 대한 연구가 고조되고 있다. 세일 드론의 용도는 해양 조사, 감시 및 오염방제 등을 들 수 있다. 따라서 본 연구에서는 트윈 세일을 채용한 드론에 대해 선속을 추정하는 방식을 이용하여 항주최적조건을 확인하고 세일드론의 운동성능 및 저항 등 초기설계단계에서 검토해야 할 성능에 대해서 고찰하고자 하였다. 그 결과, 트윈 세일 드론은 항해속도를 2.0 m/s 이하로 유지하는 편이 유리하며 복원성 또한 DNV에서 규정하는 조건을 충족시켰다. 또한, TWA 100°일 때 받음각 20°에서 최고속력은 1.69 m/s, TWA 100°일 때 받음각 25°에서 최고속력은 1.74 m/s를 보였다.

Keywords

Acknowledgement

이 논문은 2021년도 한국산업기술진흥협회(KOITA) 산학연 클러스터 지원사업의 재원으로 "한국해안에 적합한 Sail Drone 연구 개발"의 지원을 받아 수행된 연구임(KOITA-COLTER-2021-0059).

References

  1. Chi, H. R., W. J. Kim, and J. H. Park(2007), Viscous Flow Calculation around a 30 FT-class Sailing Yacht Hull, Journal of the Society of Naval Architects of korea, Vol. 44, No. 3, pp. 248-257. https://doi.org/10.3744/SNAK.2007.44.3.248
  2. De Ridder, E. J., K. J. Vermeulen, and J. A. Keuning(2004), A mathematical model for the tacking maneuver of a sailing yachtments, The International HISWA Symposium on Yacht Design and Yacht Construction, pp. 1-34.
  3. DNV(2015), Rules for High Speed, Light Craft and Naval Surface Craft, Pt. 5, Ch. 7.
  4. Elkaim, G. H.(2008), Autonomous Surface Vehicle FreeRotating Wingsail Section Design and Configuration Analysis, Journal of Aircraft, Vol. 45, No. 6, pp. 1835-1852. https://doi.org/10.2514/1.27284
  5. Furukawa, H., A. W. Blakeley, R. G. J. Flay, and P. J. Richards(2015), Performance of wing sail with multi element by two-dimensional wind tunnel investigations, The Journal of Fluid Science and Technology Vol. 10, No. 2, pp. 1-14
  6. Gerritsma, J., J. A. Keuning, and R. Onnink(1991), CSYS the Delft Systematic Yacht Hull (Series II) Experiments.
  7. Kim, S. Y., N. S. Sun, and S. H. Kim(2014), Development Localization of Multipurpose Intelligent Unmanned Ship, Journal of the Society of Naval Architects of korea, Vol. 51, No. 2, pp. 9-12.
  8. Kim, S. J., H. S. Kim, and M. J. Lee(2012), Development of Multipurpose Intelligent Unmanned Ship Marine Observation System, Journal of the Society of Marine Environment & Energy, pp. 504-503.
  9. Kim, S. Y.(2014), Unmanned Ship Research Trend, Journal of the Society of Naval Architects of Korea, Vol. 51, No. 2, p. 2.
  10. Keuning, J. A. and U. B. Sonnenberg(1998), Approximation of the Hydrodynamic Forces on a Sailing Yacht based on the 'Delft Systematic Yacht Hull Series'. Proceedings of the 15th International HISWA Symposium on Yacht Design and Yacht Construction.
  11. Kwon, S. Y. and H. J. Lee(2007), A Study on the Stability Criteria of Small Vessels, The Journal of the Korean Society of Naval Architects of Korea, Vol. 44, No. 3, pp. 285-295. https://doi.org/10.3744/SNAK.2007.44.3.285
  12. Li, Q., Y. Nihei, T. Nakashima, and Y. Ikeda(2015), A study on the performance of cascade hard sails and sail-equipped vessels, Ocean Engineering, pp. 23-31.
  13. Larsson, L. and R. E. Eliasson(2000), Principles of Yacht Design. Second edition. A&C Black.
  14. Mark, N.(2006), A hardware proof of concept of a sailing robot for ocean observation, IEEE Journal of Oceanic Engineering, Vol. 31, No. 2, pp. 462-469. https://doi.org/10.1109/JOE.2006.875101
  15. Meinig, C., N. Lawrence-Slavas, R. Jenkins, and H. M. Tabisola(2015), The Use of Sail-drones to Examine Spring Conditions in the Bering Sea, Vehicle Specification and Mission Performance. OCEANS 2015 - MTS/IEEE Washington, Retrieved.
  16. Pham, M. N., B. G. Kim and C. J. Yang(2020), Shape and Spacing Effect in Curvy Twin Sail for Autonomous Sailing Drone, The Journal of the Korean Society of Marine Environment & Safety, Vol. 26, No. 7, pp. 931-941. https://doi.org/10.7837/kosomes.2020.26.7.931
  17. Ryu, I. H., B. G. Kim and C. J. Yang(2021), A Study on the Shape of Twin Curvy Sail for Unmanned Sail Drone, The Journal of the Korean Society of Marine Environment & Safety, Vol. 27, No. 7, pp. 1059-1066. https://doi.org/10.7837/kosomes.2021.27.7.1059
  18. Timmer, W. A.(2008), Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018, Wind Engineering, 32(6), pp. 525-537. https://doi.org/10.1260/030952408787548848
  19. Yoo, J. H. and H. S. Ahn(2006), Performance Predictions for Sailing Yacht by Towing Tests and VPP Calculation, Journal of Advanced Marine Engineering and Technology, 30(1), pp. 116-124.