DOI QR코드

DOI QR Code

Procedure of the Ecological Index and Rating Calculation Methods for Fishery Environmental Assessment

어장환경평가의 평가지수 및 등급 산정 방법 소개

  • Park, Sohyun (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Kim, Sunyoung (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Kim, Youn Jung (Korea Benthos Research Center, Co., Ltd) ;
  • Hong, Sok-Jin (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Jung, Rae Hong (Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science) ;
  • Yoon, Sang-Pil (Marine Environment Research Division, National Institute of Fisheries Science)
  • 박소현 (국립수산과학원 어장환경과) ;
  • 김선영 (국립수산과학원 어장환경과) ;
  • 김연정 ((주)저서생물연구센터) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 정래홍 (국립수산과학원 기후변화연구과) ;
  • 윤상필 (국립수산과학원 어장환경과)
  • Received : 2022.07.19
  • Accepted : 2022.08.29
  • Published : 2022.08.31

Abstract

Several countries are establishing management systems for aquaculture environment, and fishery environment assessment is one of them. The fishery management law amended in 2013 stipulates that a fishery environment assessment should be performed when a fish cage farm's license is extended. The purpose of the fishery environment assessment is to promote sustainable fishery, increase the fishery production capacity, and increase the fishermen incoming by implementing evaluation and improvement measures through scientific methods. The analysis items of fishery environment assessment include the Benthic Health Index (BHI), which is a biological index based on the macrobenthic polychaetes community, and total organic carbon (TOC), and the two items are scored and used for evaluation as a single grade. This study explains the selection process of BHI and TOC, which are evaluation items for fishing ground, and ecological significance of the calculated evaluation grades.

양식장 환경관리를 위하여 여러 나라에서 양식장 환경관리시스템을 구축하고 있으며, 어장환경평가가 그중 하나이다. 2013년에 개정된 국내 어장관리법에는 어류가두리양식장 면허를 연장할 때 어장환경평가를 받도록 명시되어 있다. 어장환경평가는 과학적 분석을 통한 평가를 바탕으로 양식장 환경 개선 조치를 실행하여, 지속 가능한 어업생산 조성, 어장 생산력 증가, 어업인의 소득 증가를 목적으로 한다. 어장환경평가의 평가지표는 저서다모류 군집을 기초로 한 생물지수인 저서동물지수(BHI)와 총유기탄소량(TOC)이며, 두 항목을 점수화하여 단일등급으로 산출하여 평가에 사용한다. 본 연구는 어장환경평가지표인 BHI와 TOC의 선정 과정과 산출된 평가 등급의 생태학적 의미를 설명한다.

Keywords

Acknowledgement

이 논문의 완성도를 높이기 위해 세심하게 검토해 주신 익명의 심사위원분들께 감사드립니다. 이 논문은 2022년도 국립수산과학원 수산과학연구사업(R2022062)의 지원을 받아 수행된 연구입니다.

References

  1. Albayrak S., H. Balkis, A. Zenetos, A. Kurun, and C. Kubanc(2006), Ecological quality status of coastal benthic ecosystems in the Sea of Marmara, Marine Pollution Bulletin, Vol. 52, No. 7, pp. 790-799. https://doi.org/10.1016/j.marpolbul.2005.11.022
  2. Bilyard, G. R.(1987), The value of benthic infauna in marine pollution monitoring studies, Marine Pollution Bulletin, Vol. 18, No. 11, pp. 581-585. https://doi.org/10.1016/0025-326X(87)90277-3
  3. Borja, A., J. Franco, and V. Perez(2000), A Marine Biotic Index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments, Marine Pollution Bulletin, Vol. 40, No. 12, pp. 1100-1114. https://doi.org/10.1016/S0025-326X(00)00061-8
  4. Ervik, A., P. K. Hansen, J. Aure, A. Stigebrandt, P. Johannessen, and T. Jahnsen(1997), Regulating the local environmental impact of intensive marine fish farming I. The concept of the MOM system (Modeling-Ongrowing fish farms-Monitoring), Aquaculture, Vol. 158, No. 1-2, pp. 85-94. https://doi.org/10.1016/S0044-8486(97)00186-5
  5. FAO(Food and Agriculture Organization of the United Nations)(2018), The state of world fisheries and aquaculture 2018-meeting the sustainable development goals. Rime Licence: CC BY-NC-SA 3.0 IGO.
  6. FOC(Fisheries and Oceans Canada)(2018), Regulating and monitoring British Columbia's marine finfish aquaculture facilities 2018. Fisheries and Oceans Canada, Canada. 23p.
  7. Gray, J. S.(2000), The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology, Vol. 250, pp. 23-49. https://doi.org/10.1016/S0022-0981(00)00178-7
  8. Holmer, M. and M. S. Frederiksen(2007), Stimulation of sulfate reduction rates in Mediterranean fish farm sediments inhabited by the seagrass Posidonia oceanica, Biogeochemistry, Vol. 85, No. 2, pp. 169-184. https://doi.org/10.1007/s10533-007-9127-x
  9. Hyland, J., L. Balthis, I. Karakassis, P. Magni, A. Petrov, J. Shine, O. Vestergaard, and R. Warwick(2005), Organic carbon content of sediments as an indicator of stress in the marine benthos, Marine Ecology Progress Series, Vol. 295, pp. 91-103. https://doi.org/10.3354/meps295091
  10. Ji, W., H. Yokoyama, J. Fu, and J. Zhou(2021), Effects of intensive fish farming on sediments of a temperate bay characterised by polyculture and strong current, Aquaculture reports, Vol. 19, 100579. https://doi.org/10.1016/j.aqrep.2020.100579
  11. Karakassis, I., M. Tsapakis, E. Hatziyanni, K. N. Papadopoulou, and W. Plaiti(2000), Impact of cage farming of fish on the seabed in three Mediterranean coastal areas, ICES Journal of Marine Science, Vol. 57, No. 5, pp. 1462-1471. https://doi.org/10.1006/jmsc.2000.0925
  12. Kodama, K., J. H. Lee, M. Oyama, H. Shiraishi, and T. Horiguchi(2012), Distribution of benthic macrofauna in relation to hypoxia and organic enrichment in a eutrophic coastal bay, Marine Environmental Research, Vol. 76, pp. 80-89. https://doi.org/10.1016/j.marenvres.2011.08.007
  13. KOSIS(Korean statistical information service)(2021), Fishery production survey, Source: ministry of agriculture, food and rural affairs.
  14. Llanso, R. J.(1992), Effects of hypoxia on estuarine benthos: the lower Rappahannock river (Chesapeake Bay), a case study, Estuarine, Coastal and Shelf Science, Vol. 35, No. 5, pp. 491-515. https://doi.org/10.1016/S0272-7714(05)80027-7
  15. Magni, P., D. Tagliapietra, C. Lardicci, L. Balthis, A. Castelli, S. Como, G. Frangipane, G. Giordani, J. Hyland, F. Maltagliati, G. Pessa, A. Rismondo, M. Tataranni, P. Tomasseti, and P. Viaroi(2009), Animal-sediment relationships: Evaluating the 'Pearson-Rosenberg paradigm' in Mediterranean coastal lagoons, Marine Pollution Bulletin, Vol. 58, No. 4, pp. 478-486. https://doi.org/10.1016/j.marpolbul.2008.12.009
  16. Muxika, I., A. Borja, and J. Bald(2007), Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive, Marine Pollution Bulletin, Vol. 55, pp. 16-29. https://doi.org/10.1016/j.marpolbul.2006.05.025
  17. Neofitou, N., K. Papadimitriou, C. Domenikiotic, L. Tziantziou, and P. Panagiotaki(2019), GIS in environmental monitoring and assessment of fish farming impacts on nutrients of Pagasitikos Gulf, Eastern Mediterranean, Aquaculture, Vol. 501, pp. 62-75. https://doi.org/10.1016/j.aquaculture.2018.11.005
  18. Pearson, T. H. and R. Rosenberg(1978), Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanography and Marine Biology Annual Review, Vol. 16, pp. 229-311.
  19. Rosenberg, R. and H. C. Nilsson(2005), Deterioration of soft-bottom benthos along the Swedish Skagerrak coast, Fournal of Sea research, Vol. 54, No. 3, pp. 231-242. https://doi.org/10.1016/j.seares.2005.04.003
  20. Rosenberg, R., M. Blomqvist, H. C. Nilsson, H. Cederwall, and A. Dimming(2004), Marine quality assessment by use of benthic species-abundance distributions: a proposed new protocol within the European Union Water Framework Directive. Marine Pollution Bulletin, Vol. 49, pp. 728-739. https://doi.org/10.1016/j.marpolbul.2004.05.013
  21. Samuelson, G. M.(2001), Polychaetes as indicators of environmental disturbance on subarctic tidal flats, Iqaluit, Baffin Island, Nunavut Territory, Marine Pollution Bulletin, Vol. 42, No. 9, pp. 733-741. https://doi.org/10.1016/S0025-326X(00)00208-3
  22. Sanders, H. L.(1958), Benthic Studies in Buzzards Bay. I, Animal-Sediment Relationships, Limnology and oceanography, Vol. 3, No. 3, pp. 245-258. https://doi.org/10.4319/lo.1958.3.3.0245
  23. Simboura, N. and A. Zenetos(2002), Benthic indicators to use in ecological quality classification of Mediterranean soft bottom marine ecosystem, including a new biotic index, Mediterranean Marine Science, Vol. 3, No. 2. pp. 77-111. https://doi.org/10.12681/mms.249
  24. Subida, M. D., P. Drake, E. Jordana, B. Mavric, S. Pinedo, N. Simboura, J. Torres, and F. Salas(2012), Response of different biotic indices to gradients of organic enrichment in Mediterranean coastal water, implications of non-monotonic responses of diversity measures, Ecological indicators, Vol. 19, pp. 106-117. https://doi.org/10.1016/j.ecolind.2011.07.021
  25. Ticina, V., I. Katavic, and L. Grubisic(2020), Marine aquaculture impacts on marine biota in oligotrophic environments of the Mediterranean sea-a review, Frontiers in Marine Science, Vol. 7, p. 217. https://doi.org/10.3389/fmars.2020.00217
  26. Uede, T.(2008), Validity of acid volatile sulfide as environmental index and experiment for fixing its standard value in aquaculture farms along the coast of Wakayama prefecture, Japan, Nippon Suisan Gakkaishi, Vol. 74, No. 3, pp. 402-411. https://doi.org/10.2331/suisan.74.402
  27. Warwick, R. M.(1993), Environmental impact studies on marine communities: pragmatical considerations, Australian Journal of Ecology, Vol. 18, No. 1, pp. 63-80. https://doi.org/10.1111/j.1442-9993.1993.tb00435.x
  28. Wu, R. S. S.(1995), The environmental impact of marine fish culture: towards a sustainable future, Marine Pollution Bulletin, Vol. 31, pp. 159-166. https://doi.org/10.1016/0025-326X(95)00100-2
  29. Yokoyama, H., M. Inoue, and K. Abo(2004), Estimation of the assimilative capacity of fish-farm environments based on the current velocity measured by plaster balls, Aquaculture, Vol. 240, pp. 233-247. https://doi.org/10.1016/j.aquaculture.2004.06.018
  30. Yokoyama, H.(2003), Environmental quality criteria for fish farms in Japan, Aquaculture, Vol. 226, pp. 45-56. https://doi.org/10.1016/S0044-8486(03)00466-6
  31. Yokoyama, H. and Y. Ishihi(2010), Bioindicator and biofilter function of Ulva spp. (Chlorophyta) for dissolved inorganic nitrogen discharged from a coastal fish farm-potential role in integrated multi-trophic aquaculture, Aquaculture, Vol. 310, No. 1, pp. 74-83. https://doi.org/10.1016/j.aquaculture.2010.10.018
  32. Yoo, J. W., D. G. Lee, B. S. Kho, S. W. Lee, D. U. Han, K. H. Choi, C. S. Kim, and J. S. Hong(2011), Review and proposition of biological indicators for a new ecological grading system of tidal flats in Korea, Ocean and Polar Research, Vol. 33, No. 1, pp. 85-97. https://doi.org/10.4217/OPR.2011.33.1.085