• 제목/요약/키워드: Velocity prediction

검색결과 979건 처리시간 0.022초

Prediction of velocity and attitude of a yacht sailing upwind by computational fluid dynamics

  • Lee, Heebum;Park, Mi Yeon;Park, Sunho;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 2016
  • One of the most important factors in sailing yacht design is accurate velocity prediction. Velocity prediction programs (VPP's) are widely used to predict velocity of sailing yachts. VPP's, which are primarily based on experimental data and experience of long years, however suffer limitations when applied in realistic conditions. Thus, in the present study, a high fidelity velocity prediction method using computational fluid dynamics (CFD) was proposed. Using the developed method, velocity and attitude of a 30 feet sloop yacht, which was developed by Korea Research Institute of Ship and Ocean (KRISO) and termed KORDY30, were predicted in upwind sailing condition.

풍상 범주 중인 세일링 요트의 자세를 고려한 속도 추정 방법 (NUMERICAL METHOD FOR VELOCITY PREDICTION CONSIDERING MOTION OF A YACHT)

  • 박미연;이희범;박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.1-7
    • /
    • 2014
  • One of the most important factors in sailing yacht design is an accurate velocity prediction. Velocity prediction programs (VPPs) are widely used to predict velocity of sailing yachts. VPPs, which are primarily based on experimental data and experience of long years, suffer limitations applied in realistic conditions. Thus, in the present study, a high fidelity velocity prediction method using the computational fluid dynamics (CFD) is proposed. Using the developed method, velocity and motion of a 30 feet sloop yacht, which was developed by Korea Research Institute of Ship and Ocean (KRISO) and termed KORDY30, were predicted in upwind sailing condition.

합성곱 신경망 기반 선체 표면 유동 속도의 픽셀 수준 예측 (Pixel-level prediction of velocity vectors on hull surface based on convolutional neural network)

  • 서정범;김다연;이인원
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.18-25
    • /
    • 2023
  • In these days, high dimensional data prediction technology based on neural network shows compelling results in many different kind of field including engineering. Especially, a lot of variants of convolution neural network are widely utilized to develop pixel level prediction model for high dimensional data such as picture, or physical field value from the sensors. In this study, velocity vector field of ideal flow on ship surface is estimated on pixel level by Unet. First, potential flow analysis was conducted for the set of hull form data which are generated by hull form transformation method. Thereafter, four different neural network with a U-shape structure were conFig.d to train velocity vectors at the node position of pre-processed hull form data. As a result, for the test hull forms, it was confirmed that the network with short skip-connection gives the most accurate prediction results of streamlines and velocity magnitude. And the results also have a good agreement with potential flow analysis results. However, in some cases which don't have nothing in common with training data in terms of speed or shape, the network has relatively high error at the region of large curvature.

Correlation of elastic input energy equivalent velocity spectral values

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.957-976
    • /
    • 2015
  • Recently, two energy-based response parameters, i.e., the absolute and the relative elastic input energy equivalent velocity, have been receiving a lot of research attention. Several studies, in fact, have demonstrated the potential of these intensity measures in the prediction of the seismic structural response. Although some ground motion prediction equations have been developed for these parameters, they only provide marginal distributions without information about the joint occurrence of the spectral values at different periods. In order to build new prediction models for the two equivalent velocities, a large set of ground motion records is used to calculate the correlation coefficients between the response spectral values corresponding to different periods and components of the ground motion. Then, functional forms adopted in models from the literature are calibrated to fit the obtained data. A new functional form is proposed to improve the predictions of the considered models from the literature. The components of the ground motion considered in this study are the two horizontal ones only. Potential uses of the proposed equations in addition to the prediction of the correlation coefficients of the equivalent velocity spectral values are shown, such as the prediction of derived intensity measures and the development of conditional mean spectra.

A network traffic prediction model of smart substation based on IGSA-WNN

  • Xia, Xin;Liu, Xiaofeng;Lou, Jichao
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.366-375
    • /
    • 2020
  • The network traffic prediction of a smart substation is key in strengthening its system security protection. To improve the performance of its traffic prediction, in this paper, we propose an improved gravitational search algorithm (IGSA), then introduce the IGSA into a wavelet neural network (WNN), iteratively optimize the initial connection weighting, scalability factor, and shift factor, and establish a smart substation network traffic prediction model based on the IGSA-WNN. A comparative analysis of the experimental results shows that the performance of the IGSA-WNN-based prediction model further improves the convergence velocity and prediction accuracy, and that the proposed model solves the deficiency issues of the original WNN, such as slow convergence velocity and ease of falling into a locally optimal solution; thus, it is a better smart substation network traffic prediction model.

가스 파이프라인의 차량진동 응답 예측 (A Response Estimation for Vehicle Vibration of Gas Pipeline)

  • 박선준;박연수;강성후
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, vibration response of aerial gas pipeline due to vehicle loads was quantitatively estimated through experiment and analysis in open cut construction site. The vehicle vibration of various construction machines causes serious effect to the aerial gas pipeline. The new vibration prediction equations presented in this study can estimate the vibration velocity response of the aerial gas pipeline. In the nitration prediction equations, the vehicle′s weight and traveling velocity, which are the sources of vibration, are combined into the term called, "scaled weight" Methods to reduce vibration were proposed in case the vibration velocity response of the gas pipeline exceeded the vibration criterion, using the vibration prediction equations presented in this study. One was to limit the vehicle′s traveling velocity and the other to install the isolation equipment. Both methods can be estimated quantitatively.

퍼지논리 및 GPS정보를 이용한 링크통행속도의 예측 (Fuzzy Logic Based Prediction of Link Travel Velocity Using GPS Information)

  • 정우진;이종수;고진웅;박평수
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.342-347
    • /
    • 2003
  • 지능형교통정보시스템에 있어서 적절한 교통량 분산을 통한 교통망의 제어 및 정확한 주행정보의 제공을 위해 현재의 교통상황 또는 링크통행정보를 정확히 판단하고 평가할 수 있는 알고리즘의 개발이 필요하다. 본 논문에서는 퍼지추론시스템을 적용하여 보다 합리적으로 링크통행속도를 판단할 수 있는 알고리즘을 제안한다. 교통상황을 특징짓는 세 가지 요인으로 시간, 요일, 속도를 선정하였고 이를 퍼지변수로 표현하여 링크통행속도의 예측을 위한 적절한 퍼지규칙을 선정하였다. 본 논문에서는 실제 주행실험을 통해 얻은 차량의 GPS정보만을 사용하였다. 취득한 GPS정보 중에서 신뢰도가 높은 데이터만을 선택하여 도로통행속도를 계산하였고 퍼지추론의 과정을 통해 링크주행속도를 예측하였다.

초음파 속도법에 의한 현장 콘크리트 강도추정의 신뢰성 향상 (Reliability Improvement of In-Place Concreter Strength Prediction by Ultrasonic Pulse Velocity Method)

  • 원종필;박성기
    • 한국농공학회지
    • /
    • 제43권4호
    • /
    • pp.97-105
    • /
    • 2001
  • The ultrasonic pulse velocity test has a strong potential to be developed into a very useful and relatively inexpensive in-place test for assuring the quality of concrete placed in structure. The main problem in realizing this potential is that the relationship between compressive strength ad ultrasonic pulse velocity is uncertain and concrete is an inherently variable material. The objective of this study is to improve the reliability of in-place concrete strength predictions by ultrasonic pulse velocity method. Experimental cement content, s/a rate, and curing condition of concrete. Accuracy of the prediction expressed in empirical formula are examined by multiple regression analysis and linear regression analysis and practical equation for estimation the concrete strength are proposed. Multiple regression model uses water-cement ratio cement content s/a rate, and pulse velocity as dependent variables and the compressive strength as an independent variable. Also linear regression model is used to only pulse velocity as dependent variables. Comparing the results of the analysis the proposed equation expressed highest reliability than other previous proposed equations.

  • PDF

오메가전파의 위상예측에 관한 연구 (A Study on the Phase Prediction of Oemga Radio Wave)

  • 김동일
    • 한국항해학회지
    • /
    • 제1권1호
    • /
    • pp.1-16
    • /
    • 1977
  • The aspects of Omega phase prediction are briefly reviewed, and Swanson's Model and Pierce's Model are presented. The equations for the Omega phase prediction and the most probable coefficients of the propagating equations are derived on the base of Pierce's Model by the least square method. The coefficients are calculated from the data which are the phase differences between the pairs of the Station A (Aldra, Norway), C(Haiku, Hawaii), and D(La Mour, North Dakota) observed at Busan Harbor of the South Coast of Korea in June and September, 1976. It is clearly shown that the standard deviations of the observed lane values at Busan Harbor are as followed: 1. June, 1976. Pair (A-C) : 0.1446 Pair (C-D) : 0.2598 2.September, 1976. Pair (A-D) : 0.3958 Pafr (C-D) : 0.3278 As a conclusion of the above investigation, it is shown that the Omega phase velocity can be predicted by the method, proposed in this paper, of analyzing the diurnal and seasonal variations of the Omege phase velocity except SID, PCD and AZD. If more observed data are employed, more exact Omega phase velocity is expected to be obtained.

  • PDF

고속카메라 데이터 분석을 통한 발사체 지지대 분산 궤적의 근사적 예측 방법 (A Prediction Method for Sabot-Trajectory of Projectile by using High Speed Camera Data Analysis)

  • 박윤호;우호길
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper, we have proposed a prediction method for sabot-trajectory of projectile using high speed camera data analysis. Through analyzing trajectory of sabot with high speed camera data, we can extract its real velocity and acceleration including effects of friction force, pressure of flume, etc. Using these data, we suggest a prediction method for sabot-trajectory of projectile having variable acceleration, especially for minimum and maximum acceleration, by using interpolation method for velocity and acceleration data of sabot. Also we perform the projectile launching tests to achieve the trajectory of sabot in case of minimum and maximum thrust. Simulation results show that they are similar to real tests data, for example velocity, acceleration and the trajectory of sabot.