DOI QR코드

DOI QR Code

HPV-18 E7 Interacts with Elk-1 Leading to Elevation of the Transcriptional Activity of Elk-1 in Cervical Cancer

  • Received : 2022.08.23
  • Accepted : 2022.09.06
  • Published : 2022.11.01

Abstract

The human papillomavirus (HPV)-18 E7 (E7) oncoprotein is a major transforming protein that is thought to be involved in the development of cervical cancer. It is well-known that E7 stimulates tumour development by inactivating pRb. However, this alone cannot explain the various characteristics acquired by HPV infection. Therefore, we examined other molecules that could help explain the acquired cancer properties during E7-induced cancer development. Using the yeast two-hybrid (Y2H) method, we found that the Elk-1 factor, which is crucial for cell proliferation, invasion, cell survival, anti-apoptotic activity, and cancer development, binds to the E7. By determining which part of E7 binds to which domain of Elk-1 using the Y2H method, it was found that CR2 and CR3 of the E7 and parts 1-206, including the ETS-DNA domain of Elk-1, interact with each other. As a result of their interaction, the transcriptional activity of Elk-1 was increased, thereby increasing the expression of target genes EGR-1, c-fos, and E2F. Additionally, the colony forming assay revealed that overexpression of Elk-1 and E7 promotes C33A cell proliferation. We expect that the discovery of a novel E7 function as an Elk-1 activator could help explain whether the E7 has novel oncogenic activities in addition to p53 inactivation. We also expect that it will offer new methods for developing improved strategies for cervical cancer treatment.

Keywords

Acknowledgement

The work is supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1F1A107633713, BK21 FOUR program), National Cancer Center, Korea (NCC-2210450-1) and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Korea (HP20C0131).

References

  1. Aarthy, M., Kumar, D., Giri, R. and Singh, S. K. (2018) E7 oncoprotein of human papillomavirus: structural dynamics and inhibitor screening study. Gene 658, 159-177. https://doi.org/10.1016/j.gene.2018.03.026
  2. Ala, M. (2022) Target c-Myc to treat pancreatic cancer. Cancer Biol. Ther. 23, 34-50. https://doi.org/10.1080/15384047.2021.2017223
  3. Arbyn, M., Simon, M., Peeters, E., Xu, L., Meijer, C. J., Berkhof, J., Cuschieri, K., Bonde, J., Vanlencak, A. O., Zhao, F.-H., Rezhake, R., Gultekin, M., Dillner, J., de Sanjose, S., Canfell, K., Hillemanns, P., Almonte, M., Wentzensen, N. and Poljak, M. (2021) 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. Clin. Microbiol. Infect. 27, 1083-1095. https://doi.org/10.1016/j.cmi.2021.04.031
  4. Azam, H., Pierro, L., Reina, M., Gallagher, W. M. and Prencipe, M. (2022) Emerging role for the Serum Response Factor (SRF) as a potential therapeutic target in cancer. Expert Opin. Ther. Targets 26, 155-169. https://doi.org/10.1080/14728222.2022.2032652
  5. Balsitis, S., Dick, F., Lee, D., Farrell, L., Hyde, R. K., Griep, A. E., Dyson, N. and Lambert, P. F. (2005) Examination of the pRb-dependent and pRb-independent functions of E7 in vivo. J. Virol. 79, 11392-11402. https://doi.org/10.1128/JVI.79.17.11392-11402.2005
  6. Booy, E., Henson, E. and Gibson, S. (2011) Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer. Oncogene 30, 2367-2378. https://doi.org/10.1038/onc.2010.616
  7. Chang, J. T., Kuo, T., Chen, Y., Chiu, C., Lu, Y., Li, H., Shen, C. and Cheng, A. (2010) Highly potent and specific siRNAs against E6 or E7 genes of HPV16- or HPV18-infected cervical cancers. Cancer Gene Ther. 17, 827-836. https://doi.org/10.1038/cgt.2010.38
  8. Chemes, L. B., Glavina, J., Faivovich, J., de Prat-Gay, G. and Sanchez, I. E. (2012) Evolution of linear motifs within the papillomavirus E7 oncoprotein. J. Mol. Biol. 422, 336-346. https://doi.org/10.1016/j.jmb.2012.05.036
  9. Choi, E. K., Park, E. J., Phan, T. T., Kim, H. D., Hoe, K.-L. and Kim, D.-U. (2020) Econazole induces P53-dependent apoptosis and decreases metastasis ability in gastric cancer cells. Biomol. Ther. (Seoul) 28, 370-379. https://doi.org/10.4062/biomolther.2019.201
  10. Ci, X., Zhao, Y., Tang, W., Tu, Q., Jiang, P., Xue, X., Saunders, N. A., Zhang, L., Zhu, X. and Zhao, K.-N. (2020) HPV16 E7-impaired keratinocyte differentiation leads to tumorigenesis via cell cycle/pRb/ involucrin/spectrin/adducin cascade. Appl. Microbiol. Biotechnol. 104, 4417-4433. https://doi.org/10.1007/s00253-020-10492-4
  11. Davies-Oliveira, J., Smith, M., Grover, S., Canfell, K. and Crosbie, E. (2021) Eliminating cervical cancer: progress and challenges for high-income countries. Clin. Oncol. 33, 550-559. https://doi.org/10.1016/j.clon.2021.06.013
  12. De Luca, A., Maiello, M. R., D'Alessio, A., Pergameno, M. and Normanno, N. (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 16, S17-S27.
  13. Dell, G. and Gaston, K. (2001) Contributions in the domain of cancer research: review. Human papillomaviruses and their role in cervical cancer. Cell. Mol. Life Sci. 58, 1923-1942. https://doi.org/10.1007/PL00000827
  14. Edmonds, C. and Vousden, K. H. (1989) A point mutational analysis of human papillomavirus type 16 E7 protein. J. Virol. 63, 2650-2656. https://doi.org/10.1128/jvi.63.6.2650-2656.1989
  15. Fiedler, M., Muller-Holzner, E., Viertler, H. P., Widschwendter, A., Laich, A., Pfister, G., Spoden, G. A., Jansen-Durr, P. and Zwerschke, W. (2004) High level HPV-16 E7 oncoprotein expression correlates with reduced pRb-levels in cervical biopsies. FASEB J. 18, 1120-1122. https://doi.org/10.1096/fj.03-1332fje
  16. Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M. H. and Shaw, P. E. (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951-962. https://doi.org/10.1002/j.1460-2075.1995.tb07076.x
  17. Gonzalez, S. L., Stremlau, M., He, X., Basile, J. R. and Munger, K. (2001) Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 75, 7583-7591. https://doi.org/10.1128/JVI.75.16.7583-7591.2001
  18. Gregg, J. and Fraizer, G. (2011) Transcriptional regulation of EGR1 by EGF and the ERK signaling pathway in prostate cancer cells. Genes Cancer 2, 900-909. https://doi.org/10.1177/1947601911431885
  19. Guo, C.-p., Liu, K.-w., Luo, H.-b., Chen, H.-b., Zheng, Y., Sun, S.-n., Zhang, Q. and Huang, L. (2011) Potent anti-tumor effect generated by a novel human papillomavirus (HPV) antagonist peptide reactivating the pRb/E2F pathway. PLoS One 6, e17734. https://doi.org/10.1371/journal.pone.0017734
  20. Gyongyosi, E., Szalmas, A., Ferenczi, A., Konya, J., Gergely, L. and Veress, G. (2012) Effects of human papillomavirus (HPV) type 16 oncoproteins on the expression of involucrin in human keratinocytes. Virol. J. 9, 36. https://doi.org/10.1186/1743-422X-9-36
  21. Hatterschide, J., Castagnino, P., Kim, H. W., Sperry, S. M., Montone, K. T., Basu, D. and White, E. A. (2022) YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. Elife 11, e75466. https://doi.org/10.7554/eLife.75466
  22. Hwang, S. G., Lee, D., Kim, J., Seo, T. and Choe, J. (2002) Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1- driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277, 2923-2930. https://doi.org/10.1074/jbc.M109113200
  23. Inoue, S., Ide, H., Mizushima, T., Jiang, G., Kawahara, T. and Miyamoto, H. (2018) ELK1 promotes urothelial tumorigenesis in the presence of an activated androgen receptor. Am. J. Cancer Res. 8, 2325-2336.
  24. Jones, D. L. and Munger, K. (1997) Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J. Virol. 71, 2905-2912. https://doi.org/10.1128/jvi.71.4.2905-2912.1997
  25. Jones, D. L., Thompson, D. A. and Munger, K. (1997) Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239, 97-107. https://doi.org/10.1006/viro.1997.8851
  26. Kawahara, T., Shareef, H. K., Aljarah, A. K., Ide, H., Li, Y., Kashiwagi, E., Netto, G. J., Zheng, Y. and Miyamoto, H. (2015) ELK1 is upregulated by androgen in bladder cancer cells and promotes tumor progression. Oncotarget 6, 29860-29876. https://doi.org/10.18632/oncotarget.5007
  27. Kyriakis, J. M., App, H., Zhang, X.-f., Banerjee, P., Brautigan, D. L., Rapp, U. R. and Avruch, J. (1992) Raf-1 activates MAP kinasekinase. Nature 358, 417-421. https://doi.org/10.1038/358417a0
  28. Lange-Carter, C. A., Pleiman, C. M., Gardner, A. M., Blumer, K. J. and Johnson, G. L. (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260, 315-319. https://doi.org/10.1126/science.8385802
  29. Luczak, M. W. and Jagodzinski, P. P. (2008) Apicidin down-regulates human papillomavirus type 16 E6 and E7 transcripts and proteins in SiHa cervical cancer cells. Cancer Lett. 272, 53-60. https://doi.org/10.1016/j.canlet.2008.06.030
  30. Malla, R. and Kamal, M. A. (2021) E6 and E7 oncoproteins: potential targets of cervical cancer. Curr. Med. Chem. 28, 8163-8181. https://doi.org/10.2174/0929867327666201111145546
  31. McINTYRE, M. C., Frattini, M. G., Grossman, S. R. and Laimins, L. A. (1993) Human papillomavirus type 18 E7 protein requires intact Cys-XX-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. J. Virol. 67, 3142-3150. https://doi.org/10.1128/jvi.67.6.3142-3150.1993
  32. Minoni, L., Romero-Medina, M. C., Venuti, A., Sirand, C., Robitaille, A., Altamura, G., Le Calvez-Kelm, F., Viarisio, D., Zanier, K., Muller, M., Accardi, R. and Tommasino, M. (2020) Transforming properties of beta-3 human papillomavirus E6 and E7 proteins. mSphere 5, e00398-20.
  33. Moody, C. A. and Laimins, L. A. (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10, 550-560. https://doi.org/10.1038/nrc2886
  34. Narisawa-Saito, M. and Kiyono, T. (2007) Basic mechanisms of highrisk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 98, 1505-1511. https://doi.org/10.1111/j.1349-7006.2007.00546.x
  35. Nuber, U., Schwarz, S. E. and Scheffner, M. (1998) The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur. J. Biochem. 254, 643-649. https://doi.org/10.1046/j.1432-1327.1998.2540643.x
  36. Odrowaz, Z. and Sharrocks, A. D. (2012) ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet. 8, e1002694. https://doi.org/10.1371/journal.pgen.1002694
  37. Pal, A. and Kundu, R. (2020) Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front. Microbiol. 10, 3116. https://doi.org/10.3389/fmicb.2019.03116
  38. Patrick, D., Oliff, A. and Heimbrook, D. (1994) Identification of a novel retinoblastoma gene product binding site on human papillomavirus type 16 E7 protein. J. Biol. Chem. 269, 6842-6850. https://doi.org/10.1016/S0021-9258(17)37452-5
  39. Prathapam, T., Kuhne, C. and Banks, L. (2001) The HPV-16 E7 oncoprotein binds Skip and suppresses its transcriptional activity. Oncogene 20, 7677-7685. https://doi.org/10.1038/sj.onc.1204960
  40. Putta, S., Alvarez, L., Ludtke, S., Sehr, P., Muller, G. A., Fernandez, S. M., Tripathi, S., Lewis, J., Gibson, T. J., Chemes, L. B. and Rubin, S. M. (2022) Structural basis for tunable affinity and specificity of LxCxE-dependent protein interactions with the retinoblastoma protein family. Structure 30, 1340-1353.e3. https://doi.org/10.1016/j.str.2022.05.019
  41. Rho, S. B., Byun, H.-J., Kim, B.-R. and Lee, C. H. (2022) Snail promotes cancer cell proliferation via its interaction with the BIRC3. Biomol. Ther. (Seoul) 30, 380-388. https://doi.org/10.4062/biomolther.2022.063
  42. Rho, S. B., Byun, H. J., Kim, B.-R. and Lee, C. H. (2021a) Knockdown of LKB1 sensitizes endometrial cancer cells via AMPK activation. Biomol. Ther. (Seoul) 29, 650-657. https://doi.org/10.4062/biomolther.2021.131
  43. Rho, S. B., Lee, K. W., Lee, S.-H., Byun, H. J., Kim, B.-R. and Lee, C. H. (2021b) Novel anti-angiogenic and anti-tumour activities of the N-terminal domain of NOEY2 via binding to VEGFR-2 in ovarian cancer. Biomol. Ther. (Seoul) 29, 506-518. https://doi.org/10.4062/biomolther.2021.121
  44. Sharrocks, A. D. (2002) Complexities in ETS-domain transcription factor function and regulation: lessons from the TCF (ternary complex factor) subfamily. The Colworth Medal Lecture. Biochem. Soc. Trans. 30, 1-9. https://doi.org/10.1042/bst0300001
  45. Sima, N., Wang, W., Kong, D., Deng, D., Xu, Q., Zhou, J., Xu, G., Meng, L., Lu, Y., Wang, S. and Ma, D. (2008) RNA interference against HPV16 E7 oncogene leads to viral E6 and E7 suppression in cervical cancer cells and apoptosis via upregulation of Rb and p53. Apoptosis 13, 273-281. https://doi.org/10.1007/s10495-007-0163-8
  46. Taghizadeh, E., Jahangiri, S., Rostami, D., Taheri, F., Renani, P. G., Taghizadeh, H. and Gheibi Hayat, S. M. (2019) Roles of E6 and E7 human papillomavirus proteins in molecular pathogenesis of cervical cancer. Curr. Protein Pept. Sci. 20, 926-934. https://doi.org/10.2174/1389203720666190618101441
  47. Thiel, G., Backes, T. M., Guethlein, L. A. and Rossler, O. G. (2021) Critical protein-protein interactions determine the biological activity of Elk-1, a master regulator of stimulus-induced gene transcription. Molecules 26, 6125. https://doi.org/10.3390/molecules26206125
  48. Thierry, F. (2009) Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384, 375-379. https://doi.org/10.1016/j.virol.2008.11.014
  49. Vats, A., Trejo-Cerro, O., Massimi, P. and Banks, L. (2022) Regulation of HPV E7 stability by E6-associated protein (E6AP). J. Virol. 96, e0066322. https://doi.org/10.1128/jvi.00663-22
  50. Wang, T., Zhang, W., Huang, W., Hua, Z. and Li, S. (2021) LncRNA MALAT1 was regulated by HPV16 E7 independently of pRB in cervical cancer cells. J. Cancer 12, 6344-6355. https://doi.org/10.7150/jca.61194
  51. Wang, X., Wu, X., Zhang, Z., Ma, C., Wu, T., Tang, S., Zeng, Z., Huang, S., Gong, C., Yuan, C., Zhang, L., Feng, Y., Huang, B., Liu, W., Zhang, B., Shen, Y., Luo, W., Wang, X., Liu, B., Lei, Y., Ye, Z., Zhao, L., Cao, D., Yang, L., Chen, X., Haydon, R. C., Luu, H. H., Peng, B., Liu, X. and He, T. C. (2018) Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci. Rep. 8, 17914. https://doi.org/10.1038/s41598-018-36214-5
  52. Wendel, S. O., Stoltz, A., Xu, X., Snow, J. A. and Wallace, N. (2022) HPV 16 E7 alters translesion synthesis signaling. Research Square doi: 10.21203/rs.3.rs-1795099/v1 [Preprint].
  53. Winder, M. L. and Campbell, K. J. (2022) MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 21, 1439-1455. https://doi.org/10.1080/15384101.2022.2054096
  54. Wu, E. W., Clemens, K., Heck, D. and Munger, K. (1993a) The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J. Virol. 67, 2402-2407. https://doi.org/10.1128/jvi.67.4.2402-2407.1993
  55. Wu, J., Harrison, J., Dent, P., Lynch, K., Weber, M. and Sturgill, T. (1993b) Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol. Cell. Biol. 13, 4539-4548.
  56. Xiong, Y., Wang, Y., Ou, H. and Zhou, Y. (2022) HPV E7 oncogene expression impairs Rb function and confers CDK4/6 inhibitor resistance in cervical cancer. J. Clin. Oncol. 40, e17504. https://doi.org/10.1200/JCO.2022.40.16_suppl.e17504
  57. Yang, R., Li, X., Wu, Y., Zhang, G., Liu, X., Li, Y., Bao, Y., Yang, W. and Cui, H. (2020) EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 39, 2975-2986. https://doi.org/10.1038/s41388-020-1199-2
  58. Yang, X., Zhao, M., Xia, M., Liu, Y., Yan, J., Ji, H. and Wang, G. (2012) Selective requirement for Mediator MED23 in Ras-active lung cancer. Proc. Natl. Acad. Sci. U. S. A. 109, E2813-E2822.
  59. Yim, E.-K. and Park, J.-S. (2005) The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res. Treat. 37, 319-324. https://doi.org/10.4143/crt.2005.37.6.319
  60. Yoon, Y.-C., Fang, Z., Lee, J. E., Park, J. H., Ryu, J.-K., Jung, K. H. and Hong, S.-S. (2020) Selonsertib inhibits liver fibrosis via downregulation of ASK1/MAPK pathway of hepatic stellate cells. Biomol. Ther. (Seoul) 28, 527-536. https://doi.org/10.4062/biomolther.2020.016
  61. Zhang, J., Yu, G., Yang, Y., Wang, Y., Guo, M., Yin, Q., Yan, C., Tian, J., Fu, F. and Wang, H. (2022) A small-molecule inhibitor of MDMX suppresses cervical cancer cells via the inhibition of E6-E6AP-p53 axis. Pharmacol. Res. 177, 106128. https://doi.org/10.1016/j.phrs.2022.106128
  62. Zhao, L., Sun, X., Chen, L., Feng, X., Yang, X., Zou, P., Wang, X. and Zhang, R. (2022) Hepatitis C virus core protein promotes the metastasis of human hepatocytes by activating the MAPK/ERK/PEA3- SRF/c-Fos/MMPs axis. Arch. Med. Res. 53, 469-482. https://doi.org/10.1016/j.arcmed.2022.06.004
  63. Zhou, J., Peng, C., Li, B., Wang, F., Zhou, C., Hong, D., Ye, F., Cheng, X., Lu, W. and Xie, X. (2012) Transcriptional gene silencing of HPV16 E6/E7 induces growth inhibition via apoptosis in vitro and in vivo. Gynecol. Oncol. 124, 296-302. https://doi.org/10.1016/j.ygyno.2011.10.028
  64. Zhou, L., Ng, D. S.-C., Yam, J. C., Chen, L. J., Tham, C. C., Pang, C. P. and Chu, W. K. (2022) Post-translational modifications on the retinoblastoma protein. J. Biomed. Sci. 29, 33. https://doi.org/10.1186/s12929-022-00818-x