Acknowledgement
The work is supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1F1A107633713, BK21 FOUR program), National Cancer Center, Korea (NCC-2210450-1) and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Korea (HP20C0131).
References
- Aarthy, M., Kumar, D., Giri, R. and Singh, S. K. (2018) E7 oncoprotein of human papillomavirus: structural dynamics and inhibitor screening study. Gene 658, 159-177. https://doi.org/10.1016/j.gene.2018.03.026
- Ala, M. (2022) Target c-Myc to treat pancreatic cancer. Cancer Biol. Ther. 23, 34-50. https://doi.org/10.1080/15384047.2021.2017223
- Arbyn, M., Simon, M., Peeters, E., Xu, L., Meijer, C. J., Berkhof, J., Cuschieri, K., Bonde, J., Vanlencak, A. O., Zhao, F.-H., Rezhake, R., Gultekin, M., Dillner, J., de Sanjose, S., Canfell, K., Hillemanns, P., Almonte, M., Wentzensen, N. and Poljak, M. (2021) 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. Clin. Microbiol. Infect. 27, 1083-1095. https://doi.org/10.1016/j.cmi.2021.04.031
- Azam, H., Pierro, L., Reina, M., Gallagher, W. M. and Prencipe, M. (2022) Emerging role for the Serum Response Factor (SRF) as a potential therapeutic target in cancer. Expert Opin. Ther. Targets 26, 155-169. https://doi.org/10.1080/14728222.2022.2032652
- Balsitis, S., Dick, F., Lee, D., Farrell, L., Hyde, R. K., Griep, A. E., Dyson, N. and Lambert, P. F. (2005) Examination of the pRb-dependent and pRb-independent functions of E7 in vivo. J. Virol. 79, 11392-11402. https://doi.org/10.1128/JVI.79.17.11392-11402.2005
- Booy, E., Henson, E. and Gibson, S. (2011) Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer. Oncogene 30, 2367-2378. https://doi.org/10.1038/onc.2010.616
- Chang, J. T., Kuo, T., Chen, Y., Chiu, C., Lu, Y., Li, H., Shen, C. and Cheng, A. (2010) Highly potent and specific siRNAs against E6 or E7 genes of HPV16- or HPV18-infected cervical cancers. Cancer Gene Ther. 17, 827-836. https://doi.org/10.1038/cgt.2010.38
- Chemes, L. B., Glavina, J., Faivovich, J., de Prat-Gay, G. and Sanchez, I. E. (2012) Evolution of linear motifs within the papillomavirus E7 oncoprotein. J. Mol. Biol. 422, 336-346. https://doi.org/10.1016/j.jmb.2012.05.036
- Choi, E. K., Park, E. J., Phan, T. T., Kim, H. D., Hoe, K.-L. and Kim, D.-U. (2020) Econazole induces P53-dependent apoptosis and decreases metastasis ability in gastric cancer cells. Biomol. Ther. (Seoul) 28, 370-379. https://doi.org/10.4062/biomolther.2019.201
- Ci, X., Zhao, Y., Tang, W., Tu, Q., Jiang, P., Xue, X., Saunders, N. A., Zhang, L., Zhu, X. and Zhao, K.-N. (2020) HPV16 E7-impaired keratinocyte differentiation leads to tumorigenesis via cell cycle/pRb/ involucrin/spectrin/adducin cascade. Appl. Microbiol. Biotechnol. 104, 4417-4433. https://doi.org/10.1007/s00253-020-10492-4
- Davies-Oliveira, J., Smith, M., Grover, S., Canfell, K. and Crosbie, E. (2021) Eliminating cervical cancer: progress and challenges for high-income countries. Clin. Oncol. 33, 550-559. https://doi.org/10.1016/j.clon.2021.06.013
- De Luca, A., Maiello, M. R., D'Alessio, A., Pergameno, M. and Normanno, N. (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 16, S17-S27.
- Dell, G. and Gaston, K. (2001) Contributions in the domain of cancer research: review. Human papillomaviruses and their role in cervical cancer. Cell. Mol. Life Sci. 58, 1923-1942. https://doi.org/10.1007/PL00000827
- Edmonds, C. and Vousden, K. H. (1989) A point mutational analysis of human papillomavirus type 16 E7 protein. J. Virol. 63, 2650-2656. https://doi.org/10.1128/jvi.63.6.2650-2656.1989
- Fiedler, M., Muller-Holzner, E., Viertler, H. P., Widschwendter, A., Laich, A., Pfister, G., Spoden, G. A., Jansen-Durr, P. and Zwerschke, W. (2004) High level HPV-16 E7 oncoprotein expression correlates with reduced pRb-levels in cervical biopsies. FASEB J. 18, 1120-1122. https://doi.org/10.1096/fj.03-1332fje
- Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M. H. and Shaw, P. E. (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951-962. https://doi.org/10.1002/j.1460-2075.1995.tb07076.x
- Gonzalez, S. L., Stremlau, M., He, X., Basile, J. R. and Munger, K. (2001) Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 75, 7583-7591. https://doi.org/10.1128/JVI.75.16.7583-7591.2001
- Gregg, J. and Fraizer, G. (2011) Transcriptional regulation of EGR1 by EGF and the ERK signaling pathway in prostate cancer cells. Genes Cancer 2, 900-909. https://doi.org/10.1177/1947601911431885
- Guo, C.-p., Liu, K.-w., Luo, H.-b., Chen, H.-b., Zheng, Y., Sun, S.-n., Zhang, Q. and Huang, L. (2011) Potent anti-tumor effect generated by a novel human papillomavirus (HPV) antagonist peptide reactivating the pRb/E2F pathway. PLoS One 6, e17734. https://doi.org/10.1371/journal.pone.0017734
- Gyongyosi, E., Szalmas, A., Ferenczi, A., Konya, J., Gergely, L. and Veress, G. (2012) Effects of human papillomavirus (HPV) type 16 oncoproteins on the expression of involucrin in human keratinocytes. Virol. J. 9, 36. https://doi.org/10.1186/1743-422X-9-36
- Hatterschide, J., Castagnino, P., Kim, H. W., Sperry, S. M., Montone, K. T., Basu, D. and White, E. A. (2022) YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. Elife 11, e75466. https://doi.org/10.7554/eLife.75466
- Hwang, S. G., Lee, D., Kim, J., Seo, T. and Choe, J. (2002) Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1- driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277, 2923-2930. https://doi.org/10.1074/jbc.M109113200
- Inoue, S., Ide, H., Mizushima, T., Jiang, G., Kawahara, T. and Miyamoto, H. (2018) ELK1 promotes urothelial tumorigenesis in the presence of an activated androgen receptor. Am. J. Cancer Res. 8, 2325-2336.
- Jones, D. L. and Munger, K. (1997) Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J. Virol. 71, 2905-2912. https://doi.org/10.1128/jvi.71.4.2905-2912.1997
- Jones, D. L., Thompson, D. A. and Munger, K. (1997) Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239, 97-107. https://doi.org/10.1006/viro.1997.8851
- Kawahara, T., Shareef, H. K., Aljarah, A. K., Ide, H., Li, Y., Kashiwagi, E., Netto, G. J., Zheng, Y. and Miyamoto, H. (2015) ELK1 is upregulated by androgen in bladder cancer cells and promotes tumor progression. Oncotarget 6, 29860-29876. https://doi.org/10.18632/oncotarget.5007
- Kyriakis, J. M., App, H., Zhang, X.-f., Banerjee, P., Brautigan, D. L., Rapp, U. R. and Avruch, J. (1992) Raf-1 activates MAP kinasekinase. Nature 358, 417-421. https://doi.org/10.1038/358417a0
- Lange-Carter, C. A., Pleiman, C. M., Gardner, A. M., Blumer, K. J. and Johnson, G. L. (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260, 315-319. https://doi.org/10.1126/science.8385802
- Luczak, M. W. and Jagodzinski, P. P. (2008) Apicidin down-regulates human papillomavirus type 16 E6 and E7 transcripts and proteins in SiHa cervical cancer cells. Cancer Lett. 272, 53-60. https://doi.org/10.1016/j.canlet.2008.06.030
- Malla, R. and Kamal, M. A. (2021) E6 and E7 oncoproteins: potential targets of cervical cancer. Curr. Med. Chem. 28, 8163-8181. https://doi.org/10.2174/0929867327666201111145546
- McINTYRE, M. C., Frattini, M. G., Grossman, S. R. and Laimins, L. A. (1993) Human papillomavirus type 18 E7 protein requires intact Cys-XX-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. J. Virol. 67, 3142-3150. https://doi.org/10.1128/jvi.67.6.3142-3150.1993
- Minoni, L., Romero-Medina, M. C., Venuti, A., Sirand, C., Robitaille, A., Altamura, G., Le Calvez-Kelm, F., Viarisio, D., Zanier, K., Muller, M., Accardi, R. and Tommasino, M. (2020) Transforming properties of beta-3 human papillomavirus E6 and E7 proteins. mSphere 5, e00398-20.
- Moody, C. A. and Laimins, L. A. (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10, 550-560. https://doi.org/10.1038/nrc2886
- Narisawa-Saito, M. and Kiyono, T. (2007) Basic mechanisms of highrisk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 98, 1505-1511. https://doi.org/10.1111/j.1349-7006.2007.00546.x
- Nuber, U., Schwarz, S. E. and Scheffner, M. (1998) The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur. J. Biochem. 254, 643-649. https://doi.org/10.1046/j.1432-1327.1998.2540643.x
- Odrowaz, Z. and Sharrocks, A. D. (2012) ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet. 8, e1002694. https://doi.org/10.1371/journal.pgen.1002694
- Pal, A. and Kundu, R. (2020) Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front. Microbiol. 10, 3116. https://doi.org/10.3389/fmicb.2019.03116
- Patrick, D., Oliff, A. and Heimbrook, D. (1994) Identification of a novel retinoblastoma gene product binding site on human papillomavirus type 16 E7 protein. J. Biol. Chem. 269, 6842-6850. https://doi.org/10.1016/S0021-9258(17)37452-5
- Prathapam, T., Kuhne, C. and Banks, L. (2001) The HPV-16 E7 oncoprotein binds Skip and suppresses its transcriptional activity. Oncogene 20, 7677-7685. https://doi.org/10.1038/sj.onc.1204960
- Putta, S., Alvarez, L., Ludtke, S., Sehr, P., Muller, G. A., Fernandez, S. M., Tripathi, S., Lewis, J., Gibson, T. J., Chemes, L. B. and Rubin, S. M. (2022) Structural basis for tunable affinity and specificity of LxCxE-dependent protein interactions with the retinoblastoma protein family. Structure 30, 1340-1353.e3. https://doi.org/10.1016/j.str.2022.05.019
- Rho, S. B., Byun, H.-J., Kim, B.-R. and Lee, C. H. (2022) Snail promotes cancer cell proliferation via its interaction with the BIRC3. Biomol. Ther. (Seoul) 30, 380-388. https://doi.org/10.4062/biomolther.2022.063
- Rho, S. B., Byun, H. J., Kim, B.-R. and Lee, C. H. (2021a) Knockdown of LKB1 sensitizes endometrial cancer cells via AMPK activation. Biomol. Ther. (Seoul) 29, 650-657. https://doi.org/10.4062/biomolther.2021.131
- Rho, S. B., Lee, K. W., Lee, S.-H., Byun, H. J., Kim, B.-R. and Lee, C. H. (2021b) Novel anti-angiogenic and anti-tumour activities of the N-terminal domain of NOEY2 via binding to VEGFR-2 in ovarian cancer. Biomol. Ther. (Seoul) 29, 506-518. https://doi.org/10.4062/biomolther.2021.121
- Sharrocks, A. D. (2002) Complexities in ETS-domain transcription factor function and regulation: lessons from the TCF (ternary complex factor) subfamily. The Colworth Medal Lecture. Biochem. Soc. Trans. 30, 1-9. https://doi.org/10.1042/bst0300001
- Sima, N., Wang, W., Kong, D., Deng, D., Xu, Q., Zhou, J., Xu, G., Meng, L., Lu, Y., Wang, S. and Ma, D. (2008) RNA interference against HPV16 E7 oncogene leads to viral E6 and E7 suppression in cervical cancer cells and apoptosis via upregulation of Rb and p53. Apoptosis 13, 273-281. https://doi.org/10.1007/s10495-007-0163-8
- Taghizadeh, E., Jahangiri, S., Rostami, D., Taheri, F., Renani, P. G., Taghizadeh, H. and Gheibi Hayat, S. M. (2019) Roles of E6 and E7 human papillomavirus proteins in molecular pathogenesis of cervical cancer. Curr. Protein Pept. Sci. 20, 926-934. https://doi.org/10.2174/1389203720666190618101441
- Thiel, G., Backes, T. M., Guethlein, L. A. and Rossler, O. G. (2021) Critical protein-protein interactions determine the biological activity of Elk-1, a master regulator of stimulus-induced gene transcription. Molecules 26, 6125. https://doi.org/10.3390/molecules26206125
- Thierry, F. (2009) Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384, 375-379. https://doi.org/10.1016/j.virol.2008.11.014
- Vats, A., Trejo-Cerro, O., Massimi, P. and Banks, L. (2022) Regulation of HPV E7 stability by E6-associated protein (E6AP). J. Virol. 96, e0066322. https://doi.org/10.1128/jvi.00663-22
- Wang, T., Zhang, W., Huang, W., Hua, Z. and Li, S. (2021) LncRNA MALAT1 was regulated by HPV16 E7 independently of pRB in cervical cancer cells. J. Cancer 12, 6344-6355. https://doi.org/10.7150/jca.61194
- Wang, X., Wu, X., Zhang, Z., Ma, C., Wu, T., Tang, S., Zeng, Z., Huang, S., Gong, C., Yuan, C., Zhang, L., Feng, Y., Huang, B., Liu, W., Zhang, B., Shen, Y., Luo, W., Wang, X., Liu, B., Lei, Y., Ye, Z., Zhao, L., Cao, D., Yang, L., Chen, X., Haydon, R. C., Luu, H. H., Peng, B., Liu, X. and He, T. C. (2018) Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci. Rep. 8, 17914. https://doi.org/10.1038/s41598-018-36214-5
- Wendel, S. O., Stoltz, A., Xu, X., Snow, J. A. and Wallace, N. (2022) HPV 16 E7 alters translesion synthesis signaling. Research Square doi: 10.21203/rs.3.rs-1795099/v1 [Preprint].
- Winder, M. L. and Campbell, K. J. (2022) MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 21, 1439-1455. https://doi.org/10.1080/15384101.2022.2054096
- Wu, E. W., Clemens, K., Heck, D. and Munger, K. (1993a) The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J. Virol. 67, 2402-2407. https://doi.org/10.1128/jvi.67.4.2402-2407.1993
- Wu, J., Harrison, J., Dent, P., Lynch, K., Weber, M. and Sturgill, T. (1993b) Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol. Cell. Biol. 13, 4539-4548.
- Xiong, Y., Wang, Y., Ou, H. and Zhou, Y. (2022) HPV E7 oncogene expression impairs Rb function and confers CDK4/6 inhibitor resistance in cervical cancer. J. Clin. Oncol. 40, e17504. https://doi.org/10.1200/JCO.2022.40.16_suppl.e17504
- Yang, R., Li, X., Wu, Y., Zhang, G., Liu, X., Li, Y., Bao, Y., Yang, W. and Cui, H. (2020) EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 39, 2975-2986. https://doi.org/10.1038/s41388-020-1199-2
- Yang, X., Zhao, M., Xia, M., Liu, Y., Yan, J., Ji, H. and Wang, G. (2012) Selective requirement for Mediator MED23 in Ras-active lung cancer. Proc. Natl. Acad. Sci. U. S. A. 109, E2813-E2822.
- Yim, E.-K. and Park, J.-S. (2005) The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res. Treat. 37, 319-324. https://doi.org/10.4143/crt.2005.37.6.319
- Yoon, Y.-C., Fang, Z., Lee, J. E., Park, J. H., Ryu, J.-K., Jung, K. H. and Hong, S.-S. (2020) Selonsertib inhibits liver fibrosis via downregulation of ASK1/MAPK pathway of hepatic stellate cells. Biomol. Ther. (Seoul) 28, 527-536. https://doi.org/10.4062/biomolther.2020.016
- Zhang, J., Yu, G., Yang, Y., Wang, Y., Guo, M., Yin, Q., Yan, C., Tian, J., Fu, F. and Wang, H. (2022) A small-molecule inhibitor of MDMX suppresses cervical cancer cells via the inhibition of E6-E6AP-p53 axis. Pharmacol. Res. 177, 106128. https://doi.org/10.1016/j.phrs.2022.106128
- Zhao, L., Sun, X., Chen, L., Feng, X., Yang, X., Zou, P., Wang, X. and Zhang, R. (2022) Hepatitis C virus core protein promotes the metastasis of human hepatocytes by activating the MAPK/ERK/PEA3- SRF/c-Fos/MMPs axis. Arch. Med. Res. 53, 469-482. https://doi.org/10.1016/j.arcmed.2022.06.004
- Zhou, J., Peng, C., Li, B., Wang, F., Zhou, C., Hong, D., Ye, F., Cheng, X., Lu, W. and Xie, X. (2012) Transcriptional gene silencing of HPV16 E6/E7 induces growth inhibition via apoptosis in vitro and in vivo. Gynecol. Oncol. 124, 296-302. https://doi.org/10.1016/j.ygyno.2011.10.028
- Zhou, L., Ng, D. S.-C., Yam, J. C., Chen, L. J., Tham, C. C., Pang, C. P. and Chu, W. K. (2022) Post-translational modifications on the retinoblastoma protein. J. Biomed. Sci. 29, 33. https://doi.org/10.1186/s12929-022-00818-x