• Title/Summary/Keyword: HPV-18 E7

Search Result 26, Processing Time 0.023 seconds

A Novel Mutant of Human Papillomavirus Type 18 E6E7 Fusion Gene and its Transforming Activity

  • Zhou, Zhi-Xiang;Zhao, Chen;Li, Qian-Qian;Zeng, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7395-7399
    • /
    • 2014
  • Background: Persistent human papillomavirus (HPV) infection, especially with high-risk types such as HPV16 and HPV18, has been identified as the primary cause of cervical cancer. E6 and E7 are the major onco-proteins of high-risk HPVs, which are consistently expressed in HPV infected tissues but absent in normal tissues and represent ideal therapeutic targets for immunotherapy of cervical cancer. Materials and Methods: In this study, the optimized fusion gene HPV18 E6E7 (HPV18 ofE6E7) was constructed according to genetic codon usage for human genes. At the same time, for safety future clinical application, a mutant of HPV18 ofE6E7 fusion gene was generated by site-directed mutagenesis at L52G for the E6 protein and C98G for the E7 protein. Results: HPV18-E6E7 mutant (HPV18 ofmE6E7) constructed in this work not only lost the transformation capability for NIH 3T3 cells and tumorigenicity in BALB/c nude mice, but also maintained very good stability and antigenicity. Conclusion: These results suggest that the mutant should undergo further study for application as a safe antigenspecific therapeutic vaccine for HPV18-associated tumors.

Human Papillomavirus Type 16/18 Oncoproteins: Potential Therapeutic Targets in Non-smoking Associated Lung Cancer

  • Zhang, Er-Ying;Tang, Xu-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5363-5369
    • /
    • 2012
  • High-risk human papillomavirus (HPV) especially HPV-16 and HPV-18 types are speculated to be important risk factors in non-smoking associated lung cancer in Asia. Increasing evidence has demonstrated that HPV oncoproteins may contribute to lung tumorigenesis and cell transformation. Importantly, HPV 16/18 E6 and E7 oncoproteins can mediate expression of multiple target genes and proteins, such as p53/pRb, VEGF, HIF-$1{\alpha}$, cIAP-2, and hTERT, and contribute to cell proliferation, angiogenesis and cell immortalization through different signaling pathways in lung cancer. This article provides an overview of experiment data on HPV-associated lung cancer, describes the main targets on which HPV E6/E7 oncoproteins act, and further discusses the potential signaling pathways in which HPV E6/E7 oncoproteins are involved. In addition, we also raise questions regarding existing problems with the study of HPV-associated lung cancer.

Diagnostic Performance of HPV E6/E7 mRNA and HPV DNA Assays for the Detection and Screening of Oncogenic Human Papillomavirus Infection among Woman with Cervical Lesions in China

  • Wang, Hye-young;Lee, Dongsup;Park, Sunyoung;Kim, Geehyuk;Kim, Sunghyun;Han, Lin;Yubo, Ren;Li, Yingxue;Park, Kwang Hwa;Lee, Hyeyoung
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7633-7640
    • /
    • 2015
  • Background: Human papillomavirus (HPV) is the most common sexually transmitted infection worldwide and it is responsible for most cases of cervical uterine cancer. Although HPV infections of the cervix do not always progress to cancer, 90% of cervical cancer cases have been found to be associated with high risk HPV (HR-HPV) infection. HPV DNA testing is widely used, along with Papanicolaou (Pap) testing, to screen for cervical abnormalities. However, there are no data on the prevalence of genotype-specific HPV infections assessed by measuring HPV E6/E7 mRNA in women representative of the Chinese population across a broad age range. Materials and Methods: In the present study, we compared the results with the CervicGen HPV RT-qDx assay, which detects 16 HR-HPV genotypes (Alpha-9: HPV 16, 31, 33, 35, 52, and 58; Alpha-7: HPV 18, 39, 45, 51, 59, and 68; and Alpha-5, 6: HPV 53, 56, 66, and 69), and the REBA HPV-ID assay, which detects 32 HPV genotypes based on the reverse blot hybridization assay (REBA) for the detection of oncogenic HPV infection according to cytological diagnosis. We also investigated the prevalence and genotype distribution of HPV infection with a total of 324 liquid-based cytology samples collected in western Shandong province, East China. Results: The overall HPV prevalences determined by HPV DNA and HPV E6/E7 mRNA assays in this study were 79.9% (259/324) and 55.6% (180/324), respectively. Although the positivity of HPV E6/E7 mRNA expression was significantly lower than HPV DNA positivity, the HPV E6/E7 mRNA assay showed greater specificity than the HPV DNA assay (88.6% vs. 48.1%) in normal cytology samples. The prevalence of Alpha-9 (HPV 16, 31, 33, 35, 52, and 58) HPV infection among these women accounted for up to 80.3% and 76.1% of the high-grade lesions detected in the HPV mRNA and DNA tests, respectively. The HR-HPV genotype distribution, based on HPV DNA and E6/E7 mRNA expression by age group in patients with cytologically confirmed lesions, was highest in women aged 40 to 49 years (35.9% for cytologically confirmed cases, Pearson correlation r value=0.993, p<0.001) for high-grade lesions. Among the oncogenic HR-HPV genotypes for all age groups, there was little difference in the distribution of HPV genotypes between the HPV DNA (HPV -16, 53, 18, 58, and 33) and HPV E6/E7 mRNA (HPV -16, 53, 33, 58, and 18) assays. HPV 16 was the most common HPV genotype among women with high-grade lesions. Conclusions: Our results suggest that the HPV E6/E7 mRNA assay can be a sensitive and specific tool for the screening and investigation of cervical cancer. Furthermore, it may provide useful information regarding the necessity for early cervical cancer screenings and the development of additional effective HPV vaccines, such as one for HPV 53 and 58. Additionally, gaining knowledge of HPV distribution may also inform us about ecological changes in HPV after the vaccination.

Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18

  • Lee, Hye Seon;Kim, Min Wook;Jin, Kyeong Sik;Shin, Ho-Chul;Kim, Won Kon;Lee, Sang Chul;Kim, Seung Jun;Lee, Eun-Woo;Ku, Bonsu
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.26-37
    • /
    • 2021
  • Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.

Human Papillomavirus Genotype Distribution and E6/E7 Oncogene Expression in Turkish Women with Cervical Cytological Findings

  • Tezcan, Seda;Ozgur, Didem;Ulger, Mahmut;Aslan, Gonul;Gurses, Iclal;Serin, Mehmet Sami;Giray, Burcu Gurer;Dilek, Saffet;Emekdas, Gurol
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.3997-4003
    • /
    • 2014
  • Background: Infection with certain human papillomavirus (HPV) genotypes is the most important risk factor related with cervical cancer. The objective of the present study was to investigate the prevalence of HPV infection, the distribution of HPV genotypes and HPV E6/E7 oncogene mRNA expression in Turkish women with different cervical cytological findings in Mersin province, Southern Turkey. Materials and Methods: A total of 476 cytological samples belonging to women with normal and abnormal cervical Pap smears were enrolled in the study. For the detection and genotyping assay, a PCR/direct cycle sequencing approach was used. E6/E7 mRNA expression of HPV-16, 18, 31, 33, and 45 was determined by type-specific real-time NASBA assay (NucliSENS EasyQ$^{(R)}$HPV v1.1). Results: Of the 476 samples, 106 (22.3%) were found to be positive for HPV DNA by PCR. The presence of HPV was significantly more common (p<0.001) in HSIL (6/8, 75%) when compared with LSIL (6/14, 42.9%), ASC-US (22/74, 29.7%) and normal cytology (72/380, 18.9%). The most prevalent genotypes were, in descending order of frequency, HPV genotype 66 (22.6%), 16 (20.8%), 6 (14.2%), 31 (11.3%), 53 (5.7%), and 83 (4.7%). HPV E6/E7 oncogene mRNA positivity (12/476, 2.5%) was lower than DNA positivity (38/476, 7.9%). Conclusions: Our data present a wide distribution of HPV genotypes in the analyzed population. HPV genotypes 66, 16, 6, 31, 53 and 83 were the predominant types and most of them were potential carcinogenic types. Because of the differences between HPV E6/E7 mRNA and DNA positivity, further studies are required to test the role of mRNA testing in the triage of women with abnormal cervical cytology or follow up of HPV DNA positive and cytology negative. These epidemiological data will be important to determine the future impact of vaccination on HPV infected women in our region.

Analytical Performance of Sensitivity and Specificity for Rapid Multiplex High Risk Human Papillomavirus Detection Kit: HPV ViroCheck (고위험군 HPV 검출을 위한 분석적 민감도와 특이도 성능평가)

  • Park, Sunyoung;Yoon, Hyeonseok;Bang, Hyeeun;Kim, Yeun;Choi, Seongkyung;Ahn, Sungwoo;Kim, Jungho;Lee, Suji;Yang, Ji Yeong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.446-454
    • /
    • 2017
  • Human papillomaviruses (HPVs) are major causes of cervical cancer. Sixteen high risk HPVs, including HPV 16, HPV 18, HPV31, HPV 33, HPV 35, HPV 39, HPV 45, HPV 51, HPV 52, HPV 53, HPV 56, HPV 58, HPV 59, HPV 66, HPV 68, and HPV 69 are found in cervical cancer. HPVs 16 and 18 are mainly presented in 70% of cervical cancer. Therefore, identifying the presence of these high-risk HPVs is crucial. The objective of this study is to establish the HPV ViroCheck for detecting 16 HR-HPVs and genotypes of HPVs 16 and 18, as well as to analyze the analytical performance of HPV ViroCheck. We performed the analytical sensitivity of HPV E6 / E7 genes of 16 high risk HPVs to confirm the limit of detection. Then, a cross reactivity of HPV ViroCheck with microorganisms and viruses related to the cervix were analyzed for analytical specificity. Analytical sensitivity of high risk HPV genotypes ranged from 1 to 100 copies when using cloned DNAs. The limit of detection was 10 cells for both SiHa and HeLa cells. Cervical-related microorganisms and viruses did not show cross-reactivity to HPV DNA. Moreover, the intra- and inter-assay coefficient variations (CVs) were below 5%. In conclusion, HPV Virocheck will be useful for the detection of 16 HR HPVs, as well as HPV 16 and HPV 18 genotypes rapidly.

The Effects of Rhus Extracts on The Cytotoxicity on Cancer Cells and E6 and E7 Oncogenes of Human Papillomavirus Type 16 (옻 추출물의 세포독성 및 자궁 경부암 바이러스 암 유발인자 E6 와 E7의 작용에 미치는 효과)

  • Cho, Young-Sik;Joung, Ok;Cho, Cheong-Weon;Lee, Kyung-Ae;Shim, Jung-Hyun;Kim, Kwang-Soo;Lee, Hong-Soo;Seung, Ki-Seung;Yoon, Do-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1389-1395
    • /
    • 2000
  • Cervical cancer has been one of the leading causes of female death from cancer worldwide with about 500,000 deaths per year. A strong association between certain human papillomaviruses (HPV types 16 and 18) and cervical cancer has been well known. An extract of natural products, Rhus, has been used to investigate whether this agent has the ability of inhibiting the oncogenes E6 and E7 of HPV type 16. This Rhus inhibited the proliferation of human cervical cancer cell lines (C-33A, SiHa, Caski) and HaCaT keratinocytes in a dose response manner. In vitro binding assay and ELISA showed that Rhus inhibited the in vitro binding of E6 and E6AP which are essential for the binding and degradation of the tumor suppressor p53. In addition, Rhus inhibited the in vitro binding of E7 and Rb which essential tumor suppressor for the control of cell cycle. The level of mRNA for E6 was also decreased by Rhus while that of E7 mRNA was not changed. Our data suggested that Rhus inhibited the oncogenecity of E6 and E7 of HPV 16 type, thus can be used as a putative anti-HPV agent for the treatment of cervical carcinomas by HPV.

  • PDF

Performance of HPV E6/E7 mRNA Genotyping Test on Paired Cervical Cancer Exfoliated Cells and Formalin Fixed Paraffin Embedded Tissues

  • Park, Sunyoung;Wang, Hyeyoung;Kim, Sunghyun;Kim, Geehyuk;Bong, Sungyoung;Jang, Hyoungsoon;Park, Sangjung;Hwang, Kooyeon;Lee, Dongsup
    • Biomedical Science Letters
    • /
    • v.22 no.3
    • /
    • pp.98-106
    • /
    • 2016
  • Investigation of human papillomavirus (HPV) in archival formalin-fixed paraffin-embedded (FFPE) material is important for understanding cervical carcinogenesis. The objective of the present study was to identify the high risk HPVs (HR-HPVs) using HPV E6/E7 mRNA testing from archival tissues in cervical cancer and the relation to HR-HPVs genotypes in paired cervical exfoliated cells. HPV E6/E7 mRNA testing and DNA chip testing were performed in 79 paired cervical FFPE tissues and exfoliated cells from women with histologically confirmed squamous cell carcinoma and adenocarcinoma. Overall agreement in HR-HPVs detection from FFPE samples and cytology samples were 98.5% in HPV 16, 100% in HPV 18, HPV 31, HPV 33, HPV 58, HPV 66, and HPV 68. Type-specific agreement between FFPE samples and cytology samples was 89.1% in HPV positive, 93.5% in HPV 16 and more than 70% in the other HR-HPVs. In conclusion, HR-HPVs were reliably detected in paired FFPE and cytology samples with some variation in type-specific detection.

Development of Enzymatic Recombinase Amplification Assays for the Rapid Visual Detection of HPV16/18

  • Ning Ding;Wanwan Qi;Zihan Wu;Yaqin Zhang;Ruowei Xu;Qiannan Lin;Jin Zhu;Huilin Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1091-1100
    • /
    • 2023
  • Human papillomavirus (HPV) types 16 and 18 are the major causes of cervical lesions and are associated with 71% of cervical cancer cases globally. However, public health infrastructures to support cervical cancer screening may be unavailable to women in low-resource areas. Therefore, sensitive, convenient, and cost-efficient diagnostic methods are required for the detection of HPV16/18. Here, we designed two novel methods, real-time ERA and ERA-LFD, based on enzymatic recombinase amplification (ERA) for quick point-of-care identification of the HPV E6/E7 genes. The entire detection process could be completed within 25 min at a constant low temperature (35-43℃), and the results of the combined methods could be present as the amplification curves or the bands presented on dipsticks and directly interpreted with the naked eye. The ERA assays evaluated using standard plasmids carrying the E6/E7 genes and clinical samples exhibited excellent specificity, as no cross-reaction with other common HPV types was observed. The detection limits of our ERA assays were 100 and 101 copies/µl for HPV16 and 18 respectively, which were comparable to those of the real-time PCR assay. Assessment of the clinical performance of the ERA assays using 114 cervical tissue samples demonstrated that they are highly consistent with real-time PCR, the gold standard for HPV detection. This study demonstrated that ERA-based assays possess excellent sensitivity, specificity, and repeatability for HPV16 and HPV18 detection with great potential to become robust diagnostic tools in local hospitals and field studies.

Immunotherapeutic Effects of Dendritic Cells Pulsed with a Coden-optimized HPV 16 E6 and E7 Fusion Gene in Vivo and in Vitro

  • Zhou, Zhi-Xiang;Li, Dan;Guan, Shan-Shan;Zhao, Chen;Li, Ze-Lin;Zeng, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3843-3847
    • /
    • 2015
  • Background: Cervical cancer is the second most common cause of cancer related death of women. Persistent HPV infection, especially with high-risk types such as HPV16 and HPV18, has been identified to be the primary cause of cervical cancer. E6 and E7 are the major oncoproteins of high-risk HPVs, which are expressed exclusively in HPV infected tissues, and thereby represent ideal therapeutic targets for immunotherapy of cervical cancer. Materials and Methods: In this work, we used recombinant adenovirus expressing coden-optimized HPV16 E6 and E7 fusion protein (Ad-ofE6E7) to prime dendritic cells (DC-ofE6E7), to investigate the ability of primed DC vaccine in eliciting antitumor immunity in vitro and vivo. Results: Our results indicated that DC-ofE6E7 vaccine co-culturing with splenocytes could strongly induce a tumor-specific cytotoxic T lymphocyte (CTL) response and kill the TC-1 cells effectively in vitro. Moreover, DC-ofE6E7 vaccine induced protective immunity against the challenge of TC-1 cancer cells in vivo. Conclusions: The results suggested that the HPV16 ofE6E7 primed DC vaccine has potential application for cervical cancer immunotherapy.