DOI QR코드

DOI QR Code

Hydroxyzine Induces Cell Death in Triple-Negative Breast Cancer Cells via Mitochondrial Superoxide and Modulation of Jak2/STAT3 Signaling

  • Shakya, Rajina (College of Pharmacy, Daegu Catholic University) ;
  • Park, Gyu Hwan (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Joo, Sang Hoon (College of Pharmacy, Daegu Catholic University) ;
  • Shim, Jung-Hyun (College of Pharmacy, Mokpo National University) ;
  • Choi, Joon-Seok (College of Pharmacy, Daegu Catholic University)
  • Received : 2022.09.17
  • Accepted : 2022.10.01
  • Published : 2022.11.01

Abstract

Treatment of triple-negative breast cancer (TNBC) has been limited due to the lack of molecular targets. In this study, we evaluated the cytotoxicity of hydroxyzine, a histamine H1 receptor antagonist in human triple-negative breast cancer BT-20 and HCC-70 cells. Hydroxyzine inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay showed that hydroxyzine induced apoptosis. The hydroxyzine-induced apoptosis was accompanied down-regulation of cyclins and CDKs, as well as the generation of reactive oxygen species (ROS) without cell cycle arrest. The effect of hydroxyzine on the induction of ROS and apoptosis on TNBC cells was prevented by pre-treatment with ROS scavengers, N-acetyl cysteine or Mito-TEMPO, a mitochondria-targeted antioxidant, indicating that an increase in the generation of ROS mediated the apoptosis induced by hydroxyzine. Western blot analysis showed that hydroxyzine-induced apoptosis was through down-regulation of the phosphorylation of JAK2 and STAT3 by hydroxyzine treatment. In addition, hydroxyzine induced the phosphorylation of JNK and p38 MAPK. Our results indicate that hydroxyzine induced apoptosis via mitochondrial superoxide generation and the suppression of JAK2/STAT3 signaling.

Keywords

Acknowledgement

This research was supported by Basic Science Research program through the National Research Foundation Korea Funded by the Ministry of Education, Science and Technology (NRF-2018R1D1A1A02050495 and NRF-2021R1A2C1014399).

References

  1. Asuaje, A., Martin, P., Enrique, N., Zegarra, L. A. D., Smaldini, P., Docena, G. and Milesi, V. (2018) Diphenhydramine inhibits voltagegated proton channels (Hv1) and induces acidification in leukemic Jurkat T cells- new insights into the pro-apoptotic effects of antihistaminic drugs. Channels (Austin) 12, 58-64. https://doi.org/10.1080/19336950.2017.1331799
  2. Baldwin, A. S. (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J. Clin. Invest. 107, 241-246. https://doi.org/10.1172/JCI11991
  3. Bayart, J. (1956) Treatment of nervousness in children with hydroxyzine. Acta Paediatr. Belg. 10, 164-169.
  4. Bertram, J. S. (2000) The molecular biology of cancer. Mol. Aspects Med. 21, 167-223. https://doi.org/10.1016/S0098-2997(00)00007-8
  5. Bollrath, J. and Greten, F. R. (2009) IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 10, 1314-1319. https://doi.org/10.1038/embor.2009.243
  6. Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C. and Darnell, J. E., Jr. (1999) Stat3 as an oncogene. Cell 98, 295-303. https://doi.org/10.1016/S0092-8674(00)81959-5
  7. Buettner, R., Mora, L. B. and Jove, R. (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 8, 945-954.
  8. Cho, T. M., Kim, J. Y., Kim, Y. J., Sung, D., Oh, E., Jang, S., Farrand, L., Hoang, V. H., Nguyen, C. T., Ann, J., Lee, J. and Seo, J. H. (2019) C-terminal HSP90 inhibitor L80 elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Cancer Lett. 447, 141-153. https://doi.org/10.1016/j.canlet.2019.01.029
  9. Chu, C., Geng, Y., Zhou, Y. and Sicinski, P. (2021) Cyclin E in normal physiology and disease states. Trends Cell Biol. 31, 732-746. https://doi.org/10.1016/j.tcb.2021.05.001
  10. Cleator, S., Heller, W. and Coombes, R. C. (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol. 8, 235-244. https://doi.org/10.1016/S1470-2045(07)70074-8
  11. Dent, R. A., Lindeman, G. J., Clemons, M., Wildiers, H., Chan, A., McCarthy, N. J., Singer, C. F., Lowe, E. S., Watkins, C. L. and Carmichael, J. (2013) Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res. 15, R88. https://doi.org/10.1186/bcr3484
  12. Franceschelli, S., Pesce, M., Vinciguerra, I., Ferrone, A., Riccioni, G., Patruno, A., Grilli, A., Felaco, M. and Speranza, L. (2011) Licocalchone-C extracted from Glycyrrhiza glabra inhibits lipopolysaccharide-interferon-gamma inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules 16, 5720-5734. https://doi.org/10.3390/molecules16075720
  13. Gibbs, W. W. (2003) Untangling the roots of cancer. Sci. Am. 289, 56-65. https://doi.org/10.1038/scientificamerican0703-56
  14. Haraguchi, K., Ito, K., Kotaki, H., Sawada, Y. and Iga, T. (1997) Prediction of drug-induced catalepsy based on dopamine D1, D2, and muscarinic acetylcholine receptor occupancies. Drug Metab. Dispos. 25, 675-684.
  15. Jacobs, A. T., Martinez Castaneda-Cruz, D., Rose, M. M. and Connelly, L. (2022) Targeted therapy for breast cancer: an overview of drug classes and outcomes. Biochem. Pharmacol. 204, 115209. https://doi.org/10.1016/j.bcp.2022.115209
  16. Kwapisz, D. (2021) Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol. Immunother. 70, 607-617. https://doi.org/10.1007/s00262-020-02736-z
  17. Ling, Y. H., Liebes, L., Zou, Y. and Perez-Soler, R. (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J. Biol. Chem. 278, 33714-33723. https://doi.org/10.1074/jbc.M302559200
  18. Lopez-Onieva, L., Fernandez-Minan, A. and Gonzalez-Reyes, A. (2008) Jak/Stat signalling in niche support cells regulates dpp transcription to control germline stem cell maintenance in the Drosophila ovary. Development 135, 533-540. https://doi.org/10.1242/dev.016121
  19. Lopez, J. and Tait, S. W. (2015) Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer 112, 957-962. https://doi.org/10.1038/bjc.2015.85
  20. Matsumoto, N., Ebihara, M., Oishi, S., Fujimoto, Y., Okada, T. and Imamura, T. (2021) Histamine H1 receptor antagonists selectively kill cisplatin-resistant human cancer cells. Sci. Rep. 11, 1492. https://doi.org/10.1038/s41598-021-81077-y
  21. McIlwain, D. R., Berger, T. and Mak, T. W. (2013) Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5, a008656.
  22. Nam, S., Xie, J., Perkins, A., Ma, Y., Yang, F., Wu, J., Wang, Y., Xu, R. Z., Huang, W., Horne, D. A. and Jove, R. (2012) Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells. Mol. Oncol. 6, 484-493. https://doi.org/10.1016/j.molonc.2012.05.002
  23. Park, B. K., Kim, D., Park, S., Maharjan, S., Kim, J., Choi, J. K., Akauliya, M., Lee, Y. and Kwon, H. J. (2021) Differential signaling and virus production in Calu-3 cells and Vero cells upon SARS-CoV-2 infection. Biomol. Ther. (Seoul) 29, 273-281. https://doi.org/10.4062/biomolther.2020.226
  24. Richa, S., Dey, P., Park, C., Yang, J., Son, J. Y., Park, J. H., Lee, S. H., Ahn, M. Y., Kim, I. S., Moon, H. R. and Kim, H. S. (2020) A new histone deacetylase inhibitor, MHY4381, induces apoptosis via generation of reactive oxygen species in human prostate cancer cells. Biomol. Ther. (Seoul) 28, 184-194. https://doi.org/10.4062/biomolther.2019.074
  25. Richelson, E. (1979) Tricyclic antidepressants and histamine H1 receptors. Mayo Clin. Proc. 54, 669-674.
  26. Seo, E. J., Fischer, N. and Efferth, T. (2017) Role of TCTP for cellular differentiation and cancer therapy. Results Probl. Cell Differ. 64, 263-281. https://doi.org/10.1007/978-3-319-67591-6_14
  27. Shan, X. L., Zhou, X. Y., Yang, J., Wang, Y. L., Deng, Y. H. and Zhang, M. X. (2010) Inhibitory effect of cucurbitacin E on the proliferation of ovarian cancer cells and its mechanism. Chin. J. Cancer 29, 20-24. https://doi.org/10.5732/cjc.009.10223
  28. Siegel, R. L., Miller, K. D. and Jemal, A. (2020) Cancer statistics, 2020. CA Cancer J. Clin. 70, 7-30. https://doi.org/10.3322/caac.21590
  29. Smith, E., Narang, P., Enja, M. and Lippmann, S. (2016) Pharmacotherapy for insomnia in primary care. Prim. Care Companion. CNS Disord. 18, doi: 10.4088/PCC.16br01930.
  30. Stover, D. G., Gil Del Alcazar, C. R., Brock, J., Guo, H., Overmoyer, B., Balko, J., Xu, Q., Bardia, A., Tolaney, S. M., Gelman, R., Lloyd, M., Wang, Y., Xu, Y., Michor, F., Wang, V., Winer, E. P., Polyak, K. and Lin, N. U. (2018) Phase II study of ruxolitinib, a selective JAK1/2 inhibitor, in patients with metastatic triple-negative breast cancer. NPJ Breast Cancer 4, 10. https://doi.org/10.1038/s41523-018-0060-z
  31. Sui, X., Kong, N., Ye, L., Han, W., Zhou, J., Zhang, Q., He, C. and Pan, H. (2014) p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 344, 174-179. https://doi.org/10.1016/j.canlet.2013.11.019
  32. Tsukuda, M., Furukawa, S., Kokatsu, T., Enomoto, H., Kubota, A. and Furukawa, M. (1995) Comparison of granisetron alone and granisetron plus hydroxyzine hydrochloride for prophylactic treatment of emesis induced by cisplatin chemotherapy. Eur. J. Cancer 31A, 1647-1649.
  33. Wang, S. W. and Sun, Y. M. (2014) The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (review). Int. J. Oncol. 44, 1032-1040. https://doi.org/10.3892/ijo.2014.2259
  34. Wong, R. S. (2011) Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87. https://doi.org/10.1186/1756-9966-30-87
  35. Wu, K. J., Huang, J. M., Zhong, H. J., Dong, Z. Z., Vellaisamy, K., Lu, J. J., Chen, X. P., Chiu, P., Kwong, D. W. J., Han, Q. B., Ma, D. L. and Leung, C. H. (2017) A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells. PLoS One 12, e0177123. https://doi.org/10.1371/journal.pone.0177123
  36. Yun, S., Yun, C. W., Lee, J. H., Kim, S. and Lee, S. H. (2018) Cripto enhances proliferation and survival of mesenchymal stem cells by up-regulating JAK2/STAT3 pathway in a GRP78-dependent manner. Biomol. Ther. (Seoul) 26, 464-473. https://doi.org/10.4062/biomolther.2017.099