DOI QR코드

DOI QR Code

Synthetic Homoisoflavane Derivatives of Cremastranone Suppress Growth of Colorectal Cancer Cells through Cell Cycle Arrest and Induction of Apoptosis

  • Shin, Ha-Eun (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Seul (College of Pharmacy, Gachon University) ;
  • Choi, Yeram (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Park, Sangkyu (Biotechnology Research Institute, Chungbuk National University) ;
  • Kwon, Sangil (College of Pharmacy, Gachon University) ;
  • Choi, Jun-Kyu (Biotechnology Research Institute, Chungbuk National University) ;
  • Seo, Seung-Yong (College of Pharmacy, Gachon University) ;
  • Lee, Younghee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
  • Received : 2022.07.01
  • Accepted : 2022.07.20
  • Published : 2022.11.01

Abstract

Colorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035. They substantially reduced the cell viability and proliferation in a dose-dependent manner. Treatment with SH-19027 and SHA-035 induced cell cycle arrest at the G2/M phase and increased expression of p21 both of which are implicated in cell cycle control. In addition, the apoptotic cell population and apoptosis-associated marker expression were accordingly increased. These results suggest that the synthesized cremastranone derivatives have anticancer effects through the suppression of cell proliferation and induction of apoptosis. Therefore, the synthesized cremastranone derivatives could be applied as novel therapeutic agents against colorectal cancer.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation funded by the Korean government, Ministry of Science, ICT, and Future Planning (NRF-2020R1I1A1A01072992, NRF-2021R1A2C1006767), and the Gachon University research fund of 2019 (GCU-2019-0306).

References

  1. Basavarajappa, H. D., Lee, B., Fei, X., Lim, D., Callaghan, B., Mund, J. A., Case, J., Rajashekhar, G., Seo, S.-Y. and Corson, T. W. (2014) Synthesis and mechanistic studies of a novel homoisoflavanone inhibitor of endothelial cell growth. PLoS One 9, e95694. https://doi.org/10.1371/journal.pone.0095694
  2. Basavarajappa, H. D., Lee, B., Lee, H., Sulaiman, R. S., An, H., Magana, C., Shadmand, M., Vayl, A., Rajashekhar, G., Kim, E. Y., Suh, Y. G., Lee, K., Seo, S. Y. and Corson, T. W. (2015) Synthesis and biological evaluation of novel homoisoflavonoids for retinal neovascularization. J. Med. Chem. 58, 5015-5027. https://doi.org/10.1021/acs.jmedchem.5b00449
  3. Bustany, S., Cahu, J., Guardiola, P. and Sola, B. (2015) Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway. BMC Cancer 15, 262. https://doi.org/10.1186/s12885-015-1240-y
  4. Cao, X., Bennett, R. L. and May, W. S. (2008) c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J. Biol. Chem. 283, 14490-14496. https://doi.org/10.1074/jbc.M801107200
  5. Cerquetti, L., Sampaoli, C., De Salvo, M., Bucci, B., Argese, N., Chimento, A., Vottari, S., Marchese, R., Pezzi, V., Toscano, V. and Stigliano, A. (2015) C-MYC modulation induces responsiveness to paclitaxel in adrenocortical cancer cell lines. Int. J. Oncol. 46, 2231-2240. https://doi.org/10.3892/ijo.2015.2902
  6. Chang, B. D., Watanabe, K., Broude, E. V., Fang, J., Poole, J. C., Kalinichenko, T. V. and Roninson, I. B. (2000) Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc. Natl. Acad. Sci. U.S.A. 97, 4291-4296. https://doi.org/10.1073/pnas.97.8.4291
  7. de Gramont, A., Figer, A., Seymour, M., Homerin, M., Hmissi, A., Cassidy, J., Boni, C., Cortes-Funes, H., Cervantes, A., Freyer, G., Papamichael, D., Le Bail, N., Louvet, C., Hendler, D., de Braud, F., Wilson, C., Morvan, F. and Bonetti, A. (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 18, 2938-2947. https://doi.org/10.1200/JCO.2000.18.16.2938
  8. Demain, A. L. and Vaishnav, P. (2011) Natural products for cancer chemotherapy. Microb. Biotechnol. 4, 687-699. https://doi.org/10.1111/j.1751-7915.2010.00221.x
  9. Douillard, J., Cunningham, D., Roth, A., Navarro, M., James, R., Karasek, P., Jandik, P., Iveson, T., Carmichael, J., Alakl, M., Gruia, G., Awad, L. and Rougier, P. (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355, 1041-1047. https://doi.org/10.1016/S0140-6736(00)02034-1
  10. du Toit, K., Drewes, S. E. and Bodenstein, J. (2010) The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones. Nat. Prod. Res. 24, 457-490. https://doi.org/10.1080/14786410903335174
  11. El-Elimat, T., Rivera-Chavez, J., Burdette, J. E., Czarnecki, A., Alhawarri, M. B., Al-Gharaibeh, M., Alali, F. and Oberlies, N. H. (2018) Cytotoxic homoisoflavonoids from the bulbs of Bellevalia flexuosa. Fitoterapia 127, 201-206. https://doi.org/10.1016/j.fitote.2018.02.022
  12. Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. https://doi.org/10.1080/01926230701320337
  13. Fan, T. J., Han, L. H., Cong, R. S. and Liang, J. (2005) Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. 37, 719-727. https://doi.org/10.1111/j.1745-7270.2005.00108.x
  14. Fernald, K. and Kurokawa, M. (2013) Evading apoptosis in cancer. Trends Cell Biol. 23, 620-633. https://doi.org/10.1016/j.tcb.2013.07.006
  15. Gobeil, S., Boucher, C. C., Nadeau, D. and Poirier, G. G. (2001) Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ. 8, 588-594. https://doi.org/10.1038/sj.cdd.4400851
  16. Han, E. K., Ng, S. C., Arber, N., Begemann, M. and Weinstein, I. B. (1999) Roles of cyclin D1 and related genes in growth inhibition, senescence and apoptosis. Apoptosis 4, 213-219. https://doi.org/10.1023/A:1009618824145
  17. Heo, M., Lee, B., Sishtla, K., Fei, X., Lee, S., Park, S., Yuan, Y., Lee, S., Kwon, S., Lee, J., Kim, S., Corson, T. W. and Seo, S. Y. (2019) Enantioselective synthesis of homoisoflavanones by asymmetric transfer hydrogenation and their biological evaluation for antiangiogenic activity. J. Org. Chem. 84, 9995-10011. https://doi.org/10.1021/acs.joc.9b01134
  18. Hoffman, B. and Liebermann, D. A. (2008) Apoptotic signaling by cMYC. Oncogene 27, 6462-6472. https://doi.org/10.1038/onc.2008.312
  19. Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  20. Kim, J. H., Kim, J. H., Yu, Y. S., Jun, H.-O., Kwon, H. J., Park, K. H. and Kim, K.-W. (2008) Inhibition of choroidal neovascularization by homoisoflavanone, a new angiogenesis inhibitor. Mol. Vis. 14, 556-561.
  21. Kim, J. H., Kim, K. H., Kim, J. H., Yu, Y. S., Kim, Y.-M., Kim, K.-W. and Kwon, H. J. (2007) Homoisoflavanone inhibits retinal neovascularization through cell cycle arrest with decrease of cdc2 expression. Biochem. Biophys. Res. Commun. 362, 848-852. https://doi.org/10.1016/j.bbrc.2007.08.100
  22. Kreis, N. N., Louwen, F. and Yuan, J. (2015) Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene 34, 1758-1767. https://doi.org/10.1038/onc.2014.133
  23. Latchman, J., Guastella, A. M. and Tofthagen, C. (2014) 5-Fluorouracil toxicity and dihydropyrimidine dehydrogenase enzyme: implications for practice. Clin. J. Oncol. Nurs. 18, 581-585. https://doi.org/10.1188/14.CJON.581-585
  24. Lee, B., Basavarajappa, H. D., Sulaiman, R. S., Fei, X., Seo, S.-Y. and Corson, T. W. (2014) The first synthesis of the antiangiogenic homoisoflavanone, cremastranone. Org. Biomol. Chem. 12, 7673-7677. https://doi.org/10.1039/C4OB01604A
  25. Lin, L.-G., Liu, Q.-Y. and Ye, Y. (2014) Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Med. 80, 1053-1066. https://doi.org/10.1055/s-0034-1383026
  26. Marmol, I., Sanchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. and Rodriguez Yoldi, M. J. (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci. 18, 197. https://doi.org/10.3390/ijms18010197
  27. Matthews, H. K., Bertoli, C. and de Bruin, R. A. M. (2022) Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23, 74-88. https://doi.org/10.1038/s41580-021-00404-3
  28. Miller, D. M., Thomas, S. D., Islam, A., Muench, D. and Sedoris, K. (2012) c-Myc and cancer metabolism. Clin. Cancer Res. 18, 5546-5553. https://doi.org/10.1158/1078-0432.CCR-12-0977
  29. Mishra, B. B. and Tiwari, V. K. (2011) Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 46, 4769-4807. Motokura, T. and Arnold, A. (1993) Cyclin D and oncogenesis. Curr. Opin. Genet. Dev. 3, 5-10.
  30. Nguyen, A.-T., Fontaine, J., Malonne, H. and Duez, P. (2006) Homoisoflavanones from Disporopsis aspera. Phytochemistry 67, 2159-2163. https://doi.org/10.1016/j.phytochem.2006.06.021
  31. Niu, M. Y., Menard, M., Reed, J. C., Krajewski, S. and Pratt, M. A. (2001) Ectopic expression of cyclin D1 amplifies a retinoic acidinduced mitochondrial death pathway in breast cancer cells. Oncogene 20, 3506-3518. https://doi.org/10.1038/sj.onc.1204453
  32. Pelengaris, S., Khan, M. and Evan, G. (2002) c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2, 764-776. https://doi.org/10.1038/nrc904
  33. Pfeffer, C. M. and Singh, A. T. (2018) Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19, 448. https://doi.org/10.3390/ijms19020448
  34. Pirkmaier, A., Yuen, K., Hendley, J., O'Connell, M. and Germain, D. (2003) Cyclin D1 overexpression sensitizes breast cancer cells to fenretinide. Clin. Cancer Res. 9, 1877-1884.
  35. Saif, M. W., Katirtzoglou, N. A. and Syrigos, K. N. (2008) Capecitabine: an overview of the side effects and their management. Anti-Cancer Drugs 19, 447-464. https://doi.org/10.1097/CAD.0b013e3282f945aa
  36. Schwikkard, S., Whitmore, H., Sishtla, K., Sulaiman, R. S., Shetty, T., Basavarajappa, H. D., Waller, C., Alqahtani, A., Frankemoelle, L., Chapman, A., Crouch, N., Wetschnig, W., Knirsch, W., Andriantiana, J., Mas-Claret, E., Langat, M. K., Mulholland, D. and Corson, T. W. (2019) The antiangiogenic activity of naturally occurring and synthetic homoisoflavonoids from the Hyacinthaceae (sensu APGII). J. Nat. Prod. 82, 1227-1239. https://doi.org/10.1021/acs.jnatprod.8b00989
  37. Shim, J. S., Kim, J. H., Lee, J., Kim, S. N. and Kwon, H. J. (2004) Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med. 70, 171-173. https://doi.org/10.1055/s-2004-815496
  38. Smits, V. A. J., Klompmaker, R., Vallenius, T., Rijksen, G., Makela, T. P. and Medema, R. H. (2000) p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J. Biol. Chem. 275, 30638-30643. https://doi.org/10.1074/jbc.M005437200
  39. Sofer-Levi, Y. and Resnitzky, D. (1996) Apoptosis induced by ectopic expression of cyclin D1 but not cyclin E. Oncogene 13, 2431-2437.
  40. Soucie, E. L., Annis, M. G., Sedivy, J., Filmus, J., Leber, B., Andrews, D. W. and Penn, L. Z. (2001) Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol. Cell. Biol. 21, 4725-4736. https://doi.org/10.1128/MCB.21.14.4725-4736.2001
  41. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660
  42. Taylor, W. R. and Stark, G. R. (2001) Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815. https://doi.org/10.1038/sj.onc.1204252
  43. Van Cutsem, E., Cervantes, A., Nordlinger, B. and Arnold, D.; ESMO Guidelines Working Group (2014) Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25, iii1-iii9. https://doi.org/10.1093/annonc/mdu260
  44. Van Cutsem, E., Hoff, P., Harper, P., Bukowski, R., Cunningham, D., Dufour, P., Graeven, U., Lokich, J., Madajewicz, S., Maroun, J., Marshall, J. L., Mitchell, E. P., Perez-Manga, G., Rougier, P., Schmiegel, W., Schoelmerich, J., Sobrero, A. and Schilsky, R. L. (2004) Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br. J. Cancer 90, 1190-1197. https://doi.org/10.1038/sj.bjc.6601676
  45. Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. https://doi.org/10.1046/j.1365-2184.2003.00266.x
  46. Xie, Y.-H., Chen, Y.-X. and Fang, J.-Y. (2020) Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 5, 22. https://doi.org/10.1038/s41392-020-0116-z
  47. Zhou, C. X., Zou, L., Mo, J. X., Wang, X. Y., Yang, B., He, Q. J. and Gan, L. S. (2013) Homoisoflavonoids from Ophiopogon japonicus. Helv. Chim. Acta 96, 1397-1405. https://doi.org/10.1002/hlca.201200493