Acknowledgement
This work was supported by grants from the National Research Foundation funded by the Korean government, Ministry of Science, ICT, and Future Planning (NRF-2020R1I1A1A01072992, NRF-2021R1A2C1006767), and the Gachon University research fund of 2019 (GCU-2019-0306).
References
- Basavarajappa, H. D., Lee, B., Fei, X., Lim, D., Callaghan, B., Mund, J. A., Case, J., Rajashekhar, G., Seo, S.-Y. and Corson, T. W. (2014) Synthesis and mechanistic studies of a novel homoisoflavanone inhibitor of endothelial cell growth. PLoS One 9, e95694. https://doi.org/10.1371/journal.pone.0095694
- Basavarajappa, H. D., Lee, B., Lee, H., Sulaiman, R. S., An, H., Magana, C., Shadmand, M., Vayl, A., Rajashekhar, G., Kim, E. Y., Suh, Y. G., Lee, K., Seo, S. Y. and Corson, T. W. (2015) Synthesis and biological evaluation of novel homoisoflavonoids for retinal neovascularization. J. Med. Chem. 58, 5015-5027. https://doi.org/10.1021/acs.jmedchem.5b00449
- Bustany, S., Cahu, J., Guardiola, P. and Sola, B. (2015) Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway. BMC Cancer 15, 262. https://doi.org/10.1186/s12885-015-1240-y
- Cao, X., Bennett, R. L. and May, W. S. (2008) c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J. Biol. Chem. 283, 14490-14496. https://doi.org/10.1074/jbc.M801107200
- Cerquetti, L., Sampaoli, C., De Salvo, M., Bucci, B., Argese, N., Chimento, A., Vottari, S., Marchese, R., Pezzi, V., Toscano, V. and Stigliano, A. (2015) C-MYC modulation induces responsiveness to paclitaxel in adrenocortical cancer cell lines. Int. J. Oncol. 46, 2231-2240. https://doi.org/10.3892/ijo.2015.2902
- Chang, B. D., Watanabe, K., Broude, E. V., Fang, J., Poole, J. C., Kalinichenko, T. V. and Roninson, I. B. (2000) Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc. Natl. Acad. Sci. U.S.A. 97, 4291-4296. https://doi.org/10.1073/pnas.97.8.4291
- de Gramont, A., Figer, A., Seymour, M., Homerin, M., Hmissi, A., Cassidy, J., Boni, C., Cortes-Funes, H., Cervantes, A., Freyer, G., Papamichael, D., Le Bail, N., Louvet, C., Hendler, D., de Braud, F., Wilson, C., Morvan, F. and Bonetti, A. (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 18, 2938-2947. https://doi.org/10.1200/JCO.2000.18.16.2938
- Demain, A. L. and Vaishnav, P. (2011) Natural products for cancer chemotherapy. Microb. Biotechnol. 4, 687-699. https://doi.org/10.1111/j.1751-7915.2010.00221.x
- Douillard, J., Cunningham, D., Roth, A., Navarro, M., James, R., Karasek, P., Jandik, P., Iveson, T., Carmichael, J., Alakl, M., Gruia, G., Awad, L. and Rougier, P. (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355, 1041-1047. https://doi.org/10.1016/S0140-6736(00)02034-1
- du Toit, K., Drewes, S. E. and Bodenstein, J. (2010) The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones. Nat. Prod. Res. 24, 457-490. https://doi.org/10.1080/14786410903335174
- El-Elimat, T., Rivera-Chavez, J., Burdette, J. E., Czarnecki, A., Alhawarri, M. B., Al-Gharaibeh, M., Alali, F. and Oberlies, N. H. (2018) Cytotoxic homoisoflavonoids from the bulbs of Bellevalia flexuosa. Fitoterapia 127, 201-206. https://doi.org/10.1016/j.fitote.2018.02.022
- Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. https://doi.org/10.1080/01926230701320337
- Fan, T. J., Han, L. H., Cong, R. S. and Liang, J. (2005) Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. 37, 719-727. https://doi.org/10.1111/j.1745-7270.2005.00108.x
- Fernald, K. and Kurokawa, M. (2013) Evading apoptosis in cancer. Trends Cell Biol. 23, 620-633. https://doi.org/10.1016/j.tcb.2013.07.006
- Gobeil, S., Boucher, C. C., Nadeau, D. and Poirier, G. G. (2001) Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ. 8, 588-594. https://doi.org/10.1038/sj.cdd.4400851
- Han, E. K., Ng, S. C., Arber, N., Begemann, M. and Weinstein, I. B. (1999) Roles of cyclin D1 and related genes in growth inhibition, senescence and apoptosis. Apoptosis 4, 213-219. https://doi.org/10.1023/A:1009618824145
- Heo, M., Lee, B., Sishtla, K., Fei, X., Lee, S., Park, S., Yuan, Y., Lee, S., Kwon, S., Lee, J., Kim, S., Corson, T. W. and Seo, S. Y. (2019) Enantioselective synthesis of homoisoflavanones by asymmetric transfer hydrogenation and their biological evaluation for antiangiogenic activity. J. Org. Chem. 84, 9995-10011. https://doi.org/10.1021/acs.joc.9b01134
- Hoffman, B. and Liebermann, D. A. (2008) Apoptotic signaling by cMYC. Oncogene 27, 6462-6472. https://doi.org/10.1038/onc.2008.312
- Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
- Kim, J. H., Kim, J. H., Yu, Y. S., Jun, H.-O., Kwon, H. J., Park, K. H. and Kim, K.-W. (2008) Inhibition of choroidal neovascularization by homoisoflavanone, a new angiogenesis inhibitor. Mol. Vis. 14, 556-561.
- Kim, J. H., Kim, K. H., Kim, J. H., Yu, Y. S., Kim, Y.-M., Kim, K.-W. and Kwon, H. J. (2007) Homoisoflavanone inhibits retinal neovascularization through cell cycle arrest with decrease of cdc2 expression. Biochem. Biophys. Res. Commun. 362, 848-852. https://doi.org/10.1016/j.bbrc.2007.08.100
- Kreis, N. N., Louwen, F. and Yuan, J. (2015) Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene 34, 1758-1767. https://doi.org/10.1038/onc.2014.133
- Latchman, J., Guastella, A. M. and Tofthagen, C. (2014) 5-Fluorouracil toxicity and dihydropyrimidine dehydrogenase enzyme: implications for practice. Clin. J. Oncol. Nurs. 18, 581-585. https://doi.org/10.1188/14.CJON.581-585
- Lee, B., Basavarajappa, H. D., Sulaiman, R. S., Fei, X., Seo, S.-Y. and Corson, T. W. (2014) The first synthesis of the antiangiogenic homoisoflavanone, cremastranone. Org. Biomol. Chem. 12, 7673-7677. https://doi.org/10.1039/C4OB01604A
- Lin, L.-G., Liu, Q.-Y. and Ye, Y. (2014) Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Med. 80, 1053-1066. https://doi.org/10.1055/s-0034-1383026
- Marmol, I., Sanchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. and Rodriguez Yoldi, M. J. (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci. 18, 197. https://doi.org/10.3390/ijms18010197
- Matthews, H. K., Bertoli, C. and de Bruin, R. A. M. (2022) Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23, 74-88. https://doi.org/10.1038/s41580-021-00404-3
- Miller, D. M., Thomas, S. D., Islam, A., Muench, D. and Sedoris, K. (2012) c-Myc and cancer metabolism. Clin. Cancer Res. 18, 5546-5553. https://doi.org/10.1158/1078-0432.CCR-12-0977
- Mishra, B. B. and Tiwari, V. K. (2011) Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 46, 4769-4807. Motokura, T. and Arnold, A. (1993) Cyclin D and oncogenesis. Curr. Opin. Genet. Dev. 3, 5-10.
- Nguyen, A.-T., Fontaine, J., Malonne, H. and Duez, P. (2006) Homoisoflavanones from Disporopsis aspera. Phytochemistry 67, 2159-2163. https://doi.org/10.1016/j.phytochem.2006.06.021
- Niu, M. Y., Menard, M., Reed, J. C., Krajewski, S. and Pratt, M. A. (2001) Ectopic expression of cyclin D1 amplifies a retinoic acidinduced mitochondrial death pathway in breast cancer cells. Oncogene 20, 3506-3518. https://doi.org/10.1038/sj.onc.1204453
- Pelengaris, S., Khan, M. and Evan, G. (2002) c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2, 764-776. https://doi.org/10.1038/nrc904
- Pfeffer, C. M. and Singh, A. T. (2018) Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19, 448. https://doi.org/10.3390/ijms19020448
- Pirkmaier, A., Yuen, K., Hendley, J., O'Connell, M. and Germain, D. (2003) Cyclin D1 overexpression sensitizes breast cancer cells to fenretinide. Clin. Cancer Res. 9, 1877-1884.
- Saif, M. W., Katirtzoglou, N. A. and Syrigos, K. N. (2008) Capecitabine: an overview of the side effects and their management. Anti-Cancer Drugs 19, 447-464. https://doi.org/10.1097/CAD.0b013e3282f945aa
- Schwikkard, S., Whitmore, H., Sishtla, K., Sulaiman, R. S., Shetty, T., Basavarajappa, H. D., Waller, C., Alqahtani, A., Frankemoelle, L., Chapman, A., Crouch, N., Wetschnig, W., Knirsch, W., Andriantiana, J., Mas-Claret, E., Langat, M. K., Mulholland, D. and Corson, T. W. (2019) The antiangiogenic activity of naturally occurring and synthetic homoisoflavonoids from the Hyacinthaceae (sensu APGII). J. Nat. Prod. 82, 1227-1239. https://doi.org/10.1021/acs.jnatprod.8b00989
- Shim, J. S., Kim, J. H., Lee, J., Kim, S. N. and Kwon, H. J. (2004) Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med. 70, 171-173. https://doi.org/10.1055/s-2004-815496
- Smits, V. A. J., Klompmaker, R., Vallenius, T., Rijksen, G., Makela, T. P. and Medema, R. H. (2000) p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J. Biol. Chem. 275, 30638-30643. https://doi.org/10.1074/jbc.M005437200
- Sofer-Levi, Y. and Resnitzky, D. (1996) Apoptosis induced by ectopic expression of cyclin D1 but not cyclin E. Oncogene 13, 2431-2437.
- Soucie, E. L., Annis, M. G., Sedivy, J., Filmus, J., Leber, B., Andrews, D. W. and Penn, L. Z. (2001) Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol. Cell. Biol. 21, 4725-4736. https://doi.org/10.1128/MCB.21.14.4725-4736.2001
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660
- Taylor, W. R. and Stark, G. R. (2001) Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815. https://doi.org/10.1038/sj.onc.1204252
- Van Cutsem, E., Cervantes, A., Nordlinger, B. and Arnold, D.; ESMO Guidelines Working Group (2014) Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25, iii1-iii9. https://doi.org/10.1093/annonc/mdu260
- Van Cutsem, E., Hoff, P., Harper, P., Bukowski, R., Cunningham, D., Dufour, P., Graeven, U., Lokich, J., Madajewicz, S., Maroun, J., Marshall, J. L., Mitchell, E. P., Perez-Manga, G., Rougier, P., Schmiegel, W., Schoelmerich, J., Sobrero, A. and Schilsky, R. L. (2004) Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br. J. Cancer 90, 1190-1197. https://doi.org/10.1038/sj.bjc.6601676
- Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. https://doi.org/10.1046/j.1365-2184.2003.00266.x
- Xie, Y.-H., Chen, Y.-X. and Fang, J.-Y. (2020) Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 5, 22. https://doi.org/10.1038/s41392-020-0116-z
- Zhou, C. X., Zou, L., Mo, J. X., Wang, X. Y., Yang, B., He, Q. J. and Gan, L. S. (2013) Homoisoflavonoids from Ophiopogon japonicus. Helv. Chim. Acta 96, 1397-1405. https://doi.org/10.1002/hlca.201200493