DOI QR코드

DOI QR Code

Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application

슬러지 폐기물을 활용한 반도체급 균일한 콜로이달 실리카 나노입자의 제조 및 CMP 응용

  • Kim, Dong Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Jiwon (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jekal, Suk (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Min Jeong (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Ha-Yeong (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Min Sang (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Sang-Chun (Xentech Company) ;
  • Park, Seon-Young (Xentech Company) ;
  • Yoon, Chang-Min (Department of Chemical and Biological Engineering, Hanbat National University)
  • 김동현 (한밭대학교 화학생명공학과) ;
  • 김지원 (한밭대학교 화학생명공학과) ;
  • 제갈석 (한밭대학교 화학생명공학과) ;
  • 김민정 (한밭대학교 화학생명공학과) ;
  • 김하영 (한밭대학교 화학생명공학과) ;
  • 김민상 (한밭대학교 화학생명공학과) ;
  • 김상춘 ((주)젠텍) ;
  • 박선영 ((주)젠텍) ;
  • 윤창민 (한밭대학교 화학생명공학과)
  • Received : 2022.08.01
  • Accepted : 2022.08.18
  • Published : 2022.09.30

Abstract

This study suggests the effective recycling method of sludge waste from various industrial fields to synthesize uniform colloidal silica nanoparticles. In detail, polymers are removed from the sludge waste to attain sludge-extracted silica (s-SiO2) micron-sized particles, and ammonia assisted sonication is applied to s-SiO2, which has effectively extracted the silanol precursor. The nano-sized silica (n-SiO2) particles are successfully synthesized by a typical sol-gel method using silanol precursor. Also, the yield amounts of n-SiO2 are determined by the function of s-SiO2 etching time. Finally, n-SiO2-based slurry is synthesized for the practical CMP application. As a result, rough-surfaced semiconductor chip is successfully polished by the n-SiO2-based slurry to exhibit the mirror-like clean surface. In this regard, sludge wastes are successfully prepared as valuable semicondutor grade materials.

본 연구에서는 반도체를 포함한 다양한 산업 분야에서 발생하는 슬러지 폐기물을 활용하여 고부가 가치의 균일한 콜로이달 실리카 나노입자를 제조하고자 하였다. 상세히는 슬러지 폐기물에서 고분자를 용해하여 추출한 실리카(s-SiO2)를 분리하였고, 암모니아와 소니케이터를 활용한 에칭을 통해 실라놀 전구체를 추출하였다. 실라놀 전구체를 활용하여 졸-겔법으로 균일한 약 50nm 크기의 실리카 나노입자(n-SiO2)를 성공적으로 합성되었음을 확인할 수 있었다. 또한, s-SiO2의 에칭 시간에 따른 n-SiO2의 수득량을 확인하였으며, 8시간의 에칭 시간에서 가장 많은 n-SiO2가 제조되는 것을 확인할 수 있었다. 최종적으로 n-SiO2를 기반으로 한 CMP용 슬러리를 제조하여, 반도체 칩의 연마에 활용하였다. 그 결과, 반도체 칩의 표면에 존재하던 빗살 무늬의 데미지들이 성공적으로 제거되었으며, 이를 통해 슬러지 폐기물에서 고부가 가치의 반도체 급 n-SiO2 소재가 성공적으로 제조되었음을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 (S3247610)

References

  1. Jadhav, U. U. and Hocheng, H., "A review of recovery of metals from industrial waste", Journal of Achievements in Materials and Manufacturing Engineering, 54(2), pp. 159-167. (2012).
  2. Lee, T.-C., "Recycling of municipal incinerator fly-ash slag and semiconductor waste sludge as admixtures in cement mortar", Construction and Building Materials, 23(11), pp. 3305-3311. (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.043
  3. Schulz, R. and Romheld, V., "Recycling of municipal and industrial organic wastes in agriculture: Benefits, limitations, and means of improvement", Soil Science and Plant Nutrition, 43, pp. 1051-1056. (1997). https://doi.org/10.1080/00380768.1997.11863716
  4. Kim, J., Jekal, S., Kim, D. H. and Yoon, C.-M., "Synthesis of energy storage material derived from heated tobacco biomass and its electrochemical application", Journal of Korea Organic Resource Recycling Association, 30(2), pp. 5-15. (2022).
  5. Awaleh, M. O. and Soubaneh, Y. D., "Waste Water Treatment in Chemical Industries: The Concept and Current Technologies", Hydrology Current Research, 5(1), p. 1000164. (2014).
  6. Lee, T.-C. and Liu, F.-J., "Recovery of hazardous semiconductor-industry sludge as a useful resource", Journal of Hazardous Materials, 165(1-3), pp. 359-365. (2009). https://doi.org/10.1016/j.jhazmat.2008.10.105
  7. Park, S.-H., Shin, J.-A. and Park, H.-D., "Exposure Possibility to By-products during the Processes of Semiconductor Manufacture", Journal of Korean Society of Occupational and Environmental Hygiene, 22(1), pp. 52-59. (2012). https://doi.org/10.35371/kjoem.2012.24.1.52
  8. Kim, O. Y. and Choe, H., "Polymerization Behavior of Polymeric Dental Restorative Composite Through the Surface Treatment of Silica Nanofiller", Journal of the Korean Industrial and Engineering Chemistry, 14(3), pp. 313-319. (2003).
  9. Sobotka, A. and Sagan, J., "Cost-Saving Environmental Activities On Construction Site - Cost Efficiency of Waste Management: Case Study", Procedia Engineering, 161(2016), pp. 388-393. (2016). https://doi.org/10.1016/j.proeng.2016.08.579
  10. Piao, C., Kim, S. H., Lee, J. K., Choi, W. G. and Kim, Y. Y., "Non-invasive ultrasonic inspection of sludge accumulation in a pipe", Ultrasonics, 119, p. 106602. (2022). https://doi.org/10.1016/j.ultras.2021.106602
  11. Rahman, I. A. and Padavettan, V., "Synthesis of Silica Nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in Silica-Polymer nanocomposites-a review", Journal of Nanomaterials, 2012(8), p. 132424. (2012).
  12. De Luna, M. D., Warmadewanthi and Liu, J. C., "Combined treatment of polishing wastewater and fluoride-containing watewater from a semiconductor manufacturer", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1-3), pp. 64-68. (2009). https://doi.org/10.1016/j.colsurfa.2008.12.006
  13. Choi, K.-M., Yeo, J.-H., Jung, M.-K., Kim, K.-S. and Cho, S.-H., "Size, Shape, and Crystal Structure of Silica Particles Generated as By-products in the Semiconductor Workplace", Journal of Korean Society of Occupational and Environmental Hygiene, 25(1), pp. 36-44. (2015). https://doi.org/10.15269/JKSOEH.2015.25.1.36
  14. Lei, H. and Zhang, P., "Preparation of alumina/silica core-shell abrasives and their CMP behavior", Applied Surface Science, 253(21), pp. 8754-8761. (2007). https://doi.org/10.1016/j.apsusc.2007.04.079
  15. Huang, Y., Li, P., Zhao, R., Zhao, L., Liu, J., Peng, S., Fu, X., Wang, X., Luo, R., Wang, R. and Zhang, Z., "Silica nanoparticles: Biomedical applications and toxicity", Biomedicine & Pharmacotherapy, 151, p. 113053. (2022). https://doi.org/10.1016/j.biopha.2022.113053
  16. Lee, H. C., Kim, J. H. and Chang, Y. H., "Preparation and Interface Properties of Colloidal Silica", Applied Chemistry for Engineering, 17(4), pp. 386-390. (2006).
  17. Rabinovich, E. M., Johnson JR, D. W., MacChesney, J. B. and Vogel, E. M., "Preparation of High-Silica Glasses from Colloidal Gels: I, Preparation for Sintering and Properties of Sintered Glasses", Journal of the American Ceramic Society, 66(10), pp. 683-688. (1983). https://doi.org/10.1111/j.1151-2916.1983.tb10529.x
  18. Huang, Y., "Modeling and analysis of SiO2 deposition during high-purity fused silica glass synthesis by SiCl4 chemical vapor deposition", Ceramics International, 45(8), pp. 10740-10745. (2019). https://doi.org/10.1016/j.ceramint.2019.02.147
  19. Joni, I. M., Nulhakim, L., Vanitha, M. and Panatarani, C., "Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor", Journal of Physics: Conference Series, 1080(1), p. 012006. (2018). https://doi.org/10.1088/1742-6596/1080/1/012006
  20. Kim, M. and Jeong, H., "A Study on CMP characteristies According to Shape of Colloidal Silica Particles", Transactions of the Korean Society of Mechanical EngineersA, 38(9), pp. 1037-1041. (2014). https://doi.org/10.3795/KSME-A.2014.38.9.1037
  21. Badley, R. D., Ford, W. T., McEnroe, F. J. and Assink, R. A., "Surface Modification of Colloidal Silica", Langmuir, 6(4), pp. 792-801. (1990). https://doi.org/10.1021/la00094a013
  22. Stober, W., Fink, A. and Bohn, E., "Controlled growth of monodisperse silica spheres in the micron size range", Journal of Colloid and Interface Science, 26(1), pp. 62-69. (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  23. Yoon, C.-M., Jang, Y., Noh, J., Kim, J. and Jang, J., "Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid", ACS Nano, 11(10), pp. 9789-9801. (2017). https://doi.org/10.1021/acsnano.7b02894
  24. Lee, S., Yoon, C.-M., Hong, J.-Y. and Jang, J., "Enhanced electrotheological performance of a graphene oxide- wrapped silica rod with a high aspect ratio", Journal of Materials Chemistry C, 2(30), pp. 6010-6016. (2014). https://doi.org/10.1039/C4TC00635F
  25. Vrancken, K. C., Coster, L. D., Voort, P. V. D., Grobet, P. J. and Vansant, E. F., "The Role of Silanols in the Modification of Silica Gel with Aminosilanes", Journal of Colloid and Interface Science, 170(1), pp. 71-77. (1995). https://doi.org/10.1006/jcis.1995.1073
  26. Yoon, C.-M., Jang, Y., Noh, H., Kim, J., Lee, K. and Jang, J., "Enhanced Electroheological Performance of Mixed Silica Nanomaterial Geometry", ACS Applied Materials & Interfaces, 9(41), pp. 36358-36367. (2017). https://doi.org/10.1021/acsami.7b08298
  27. Hyde, E. D. E. R., Seyfaee, A., Neville, F. and Moreno-Atanasio, R., "Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathway: A Review", Industrial & Engineering Chemistry Research, 55(33), pp. 8891-8913. (2016). https://doi.org/10.1021/acs.iecr.6b01839