• Title/Summary/Keyword: 콜로이드

Search Result 421, Processing Time 0.034 seconds

콜로이드 ZnO 양자점을 포함한 Polymethyl methacrylate층을 저장 영역으로 사용한 유기 쌍안정성 소자의 기억 메커니즘

  • Sim, Jae-Ho;Son, Dong-Ik;Jeong, Jae-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.185-185
    • /
    • 2010
  • 유기물과 무기물이 혼합된 나노 복합재료는 저전력 동작을 요구하는 휘어짐이 가능한 차세대 전자소자 응용에 대단히 유용한 소재이다. 간단하고 저렴한 제조 공정과 휘어짐이 가능한 유기물과 무기물이 혼합된 나노 복합재료를 사용한 비휘발성 메모리 소자의 제작과 전기적 특성은 연구되었다. 최근에 간단한 방법으로 고집적화된 휘어짐이 가능한 유기 쌍안정성 소자의 제작에 대한 연구가 진행되고 있다. 그러나 유기 쌍안정 소자의 기억 메커니즘에 대한 연구는 비교적 적게 연구되었다. 유기 쌍안정성 소자의 기억 메커니즘에 대한 연구는 효율과 신뢰성을 증진하기 위하여 대단히 중요하다. 본 연구에서는 polymethyl methacrylate (PMMA) 층에 콜로이드 ZnO 양자점을 혼합하여 제작한 유기 쌍안정성 소자의 전기적 성질과 기억 메커니즘에 대한 것을 연구하였다. 본 연구에 사용된 콜로이드 ZnO 양자점은 dimethylformamide를 사용한 환원법을 이용하여 제작하였다. 소자를 제작하기 위하여 PMMA에 대한 콜로이드 ZnO 양자점의 조성비가 1.5 wt% 가 되도록 dimethylformamide에 녹여 혼합한 용액을 하부 전극인 ITO가 증착된 유리기판위에 스핀코팅 방법을 이용하여 박막을 형성하였다. 콜로이드 ZnO 양자점을 포함한 PMMA 박막위에 상부전극으로 Al을 증착하였다. 복합 소재에 대한 투과 전자 현미경 상은 콜로이드 ZnO 양자점이 PMMA 층 안에 형성되어 있음을 보여주었다. 측정된 전류-전압(I-V) 특성은 쌍안정성 특성을 나타내었으며 이 결과는 콜로이드 ZnO 양자점에서 전하 포획, 저장과 방출 과정에 의한 것이다. 콜로이드 ZnO 양자점을 포함한 PMMA 박막을 저장 영역으로 사용한 유기 쌍안정성 소자의 I-V 측정결과를 바탕으로 전하 수송 모델과 전자적 구조를 사용하여 기억 메커니즘을 논하였다.

  • PDF

Chemical Characteristics and Water Dispersible Colloid Content of Jeju Citrus Orchard Soils (제주도 감귤원 토양의 화학적 특성과 물 분산성 콜로이드 함량)

  • Oh, Sang-Sil;Chung, Jong-Bae;Hyun, Hae-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • Water-dispersible colloids are suspected to facilitate transport of contaminants to groundwater. This study evaluated some soil chemical properties in relation to the stability of colloids in soils of Jeju citrus orchards. Thirty surface soil samples were collected, and pH, organic matter content oxalate-extractable Al and Fe contents, and water-dispersible colloid content were measured. In soils of higher pH, water-dispersible colloid contents were higher. The stability of colloids was found to be significantly promoted at pH above 5$\sim$6. Since organic matter can act as a flocculant organic matter content significantly enhanced the colloid stability. In soils of less than 5% organic C, water-dispersible colloid content was expected to be significantly higher. In soils of higher oxalate-extractable Al and Fe contents, colloids remaining in suspension were lower. This indicated that amorphous oxides and hydroxides play important stabilizing roles in soil structure and can stabilize soil clay against dispersion. Therefore in soils of higher pH, lower organic matter, and lower amorphous clay minerals, the stability of water-dispersible colloids and the potential of colloid-mediated transport of organic chemicals to groundwater could be higher.

Sorption of Eu(III) and Th(IV) on Bentonite Colloids Considering Their Precipitation and Colloid Formation (침전 및 콜로이드 형성을 고려한 Eu(III)와 Th(IV)의 벤토나이트 콜로이드에 대한 수착)

  • Baik, Min-Hoon;Lee, Jae-Kwang;Lee, Seung-Yeop;Kim, Seung-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.129-139
    • /
    • 2008
  • In this study, a sorption experiment of multivalent nuclides such as Eu(III) and Th(IV) relatively stable for redox reactions was carried out for bentonite colloids which had been prepared from the domestic Gyeongju bentonite. The amounts of the nuclides lost by an attachment to bottle walls, by a precipitation, and by a colloid formation were estimated by performing blank tests for the sorption experiments. Sorption coefficients, $K_d's$, reflecting the mass losses were obtained and investigated for the sorption of Eu(III) and Th(IV) onto the bentonite colloids. The net sorption coefficients $K_d's$ considering all the three mass losses were measured as about $10^6-10^7\;mL/g$ and $7{\times}10^6-10^7\;mL/g$ for Eu(III) and Th(IV), respectively, depending on pH. In particular, a precipitation occurred mainly at a pH greater than 5 for Eu(III) and a precipitation and colloid formation significantly occurred at a pH greater than 3 for Th(IV). The precipitation and colloid formation of the multivalent nuclides of Eu(III) and Th(IV) therefore should be considered when $K_d's$ are rightly obtained over the pH range where their precipitation and colloid formation become significant at a given concentration.

  • PDF

Surface Geometry of o-Diiodobenzene Adsorbed on Silver Colloid Surface (은 콜로이드 표면에 흡착된 o-Diiodobenzene의 흡착양식)

  • Jung Sang Suh
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.169-173
    • /
    • 1992
  • The surface geometry of o-diiodobenzene (ODIB) adsorbed on silver colloid surfaces has been studied. This molecule is standing up on 1 day old colloid surfaces, while it is lying down or standing up on 1 month old colloid surfaces. The surface geometry of ODIB is affected by the atomic scale surface roughness of colloid used. The SERS intensity of ODIB for lying down geometry is much more strong than that for standing up. This may be mainly due to that the distance from surface to the center of the molecule in lying down geometry is shorter than that in standing up.

  • PDF

Polydispersed Colloid Transport in Porous Media : An Experiment and Modeling (다공성 매질에서의 크기 분포를 갖는 콜로이드 이동 : 실험과 모델)

  • Park, Hee-Ju;Lee, Kon-Jae
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • The mechanism of radionuclide colloid transport in porous media was studied through modeling and experiment. A nondestructive column scanning system was developed to improve the traditional destructive core slicing method. With an aid of this system we could get much more results from one experiment. Neutron activated clay soaked with soluble isotopes was used as colloid suspension. Filtration coefficients obtained through the experiments show two families of colloids despite their size distribution. New modeling of polydispersed colloid transport was made with two lumped parameters. This new model simulates well. Among the soluble isotopes $^{l37}$Cs mowed mainly as a form of colloid, but $^{85}$ Sr did not.t.

  • PDF

A Theoretical Study on the Radionuclide Transport Mediated by Pseudo-Colloid in the Fractured Rock Medium (균열 암반 매질에서 의사콜로이드에 의해 매개된 방사성 핵종의 이동에 대한 이론적 연구)

  • Baik, M.H.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.532-543
    • /
    • 1995
  • In this study, a transport model was developed in order to analyze and predict the transport behaviors of radionuclides mediated by pseudo-colloid in the fractured rock media. The effect of pseudo-colloid formation on the transport of a radionuclide was shown to be tory significant when an ap-parent pseudo-colloid formation constant, $A_{ap}$ (㎥/kg), os greater than 100. It was resulted from example calculations that the transport of Pu-239 was faster than Ni-63 because pseudo-colloid formation constant of Pu-239 was venter than that of Ni-63. Thus, it can be concluded that acceleration of radionuclide migration may be occurred because the pseudo-colloid formation of radionuclides increases the amount of mobile components in the solution and consequently decreases the amount of radionuclides adsorbed on the stationary solid medium.

  • PDF

Effect of Colloidal Silica on Selective Catalytic Reduction (SCR) Catalyst Activity and Thermal Stability (Colloidal Silica의 특성이 SCR 촉매의 성능 및 열적 안정성에 미치는 영향)

  • Cha, Jin-Sun;Lee, Hyung Won;Shin, Min-Chul;Jeong, Bora;Kim, Hong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.61-66
    • /
    • 2020
  • In this study, the effect of characteristics of colloidal silica, which was used as an additive in the compression/coating catalyst process, on activities and thermal stabilities of the catalysts was investigated. The shape, size, specific surface area and porosity, and composition of four different types of colloidal silica materials were analyzed, and the NOx conversion of V2O5/TiO2 catalyst prepared by these colloidal silica were studied. Properties of the catalysts prepared by colloidal silica depend on the nature of the colloidal silica used, in particular the alkaline substances such as Na in the silica were evaluated to be directly effect on the deNOx conversion of the catalyst. In addition, higher silica contents in the colloidal silica were found to improve the deNOx activity and thermal stability of the catalyst.

A Theoretical Study on the Colloid-facilitated Radionuclide Transport with Decay Chain in the Fractured Rock (균열암반에서 방사성 붕괴사슬과 콜로이드를 동반한 방사성 핵종의 이동에 관한 이론적 연구)

  • 박진백;황용수;강철형
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.20-32
    • /
    • 2003
  • To understand the behavior of migration of contaminants in a fractured porous medium is a key to assure the overall safety of a potential radwaste repository. The feasible retention mechanism of contaminant transport in a tinctured medium are sorption of contaminants on solid surface and matrix diffusion of contaminants from a fracture into an adjacent porous medium. The acceleration mechanisms are the migration of contaminants in the form of pseudo-colloids and the limit of a volume f3r matrix diffusion. In this paper, the effects of these two acceleration mechanisms are studied mathematically, then semi-analytically computed by the application of the Talbot theorem and verified. Results indicate that the acceleration processes cannot be neglected in the modeling of contaminant transport in a fractured porous medium.

Transports of Ferrihydrite Colloids in Packed Quartz Sand Media (석영모래 속에서의 Ferrihydrite 콜로이드 이동)

  • Kim, Seok-Hwi;Gu, Baohua;Lee, Jae-Hoon;Wang, Wei;Park, Ki-Hoon;Kim, Kang-Joo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.231-238
    • /
    • 2006
  • Transports of heterogeneously charged particles were investigated based on column experiments. Synthesized mono-dispersed ferrihydrite (${\sim}100nm$) and amorphous $SiO_2\;({\sim}40nm\;and\;{\sim}80nm)$ particles, of which surfaces are oppositely charged under pH < 9.0 (ferrihydrite, positive; amorphous silica, negative), were used. $177{\sim}250{\mu}m$ quartz sand was used as a stationary matrix. The results show that even favorable particles (i.e., ferrihydrite) can show a conservative transport through the oppositely charged media (i.e., quartz) when they coexist with humic acid or with much greater number of oppositely charged particles. These results imply that transports of both negatively and positively charged contaminants may be possible at the same time under a condition of heterogeneous colloidal system.

Colloidal Engineering for Nano-Bio Fusion Research (Nano-Bio 융합 연구를 위한 콜로이드 공학)

  • Moon, Jun Hyuk;Yi, Gi-Ra;Lee, Sang-Yup;So, Jae-Hyun;Kim, Young-Seok;Yoon, Yeo-Kyun;Cho, Young-Sang;Yang, Seung-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.647-659
    • /
    • 2008
  • Colloids are a heterogeneous system in which particles of a few nanometers to hundreds micrometers in size are finely dispersed in liquid medium, but show homogeneous properties in macroscopic scale. They have attracted much attention not only as model systems of natural atomic and molecular self-assembled structures but also as novel structural materials of practical applications in a wide range of areas. In particular, recent advances in colloidal science have focused on nano-bio materials and devices which are essential for drug discovery and delivery, diagnostics and biomedical applications. In this review, first we introduce nano-bio colloidal systems and surface modification of colloidal particles which creates various functional groups. Then, various methods of fabrication of colloidal particles using holographic lithography, microfluidics and virus templates are discussed in detail. Finally, various applications of colloids in metal inks, three-dimensional photonic crystals and two-dimensional nanopatterns are also reviewed as representative potential applications.