DOI QR코드

DOI QR Code

Removal Properties of Methylene Blue using Biochar Prepared from Street Tree Pruning Branches and Household Wood Waste

가로수 전정가지 및 생활계 폐목재를 이용하여 제조한 바이오차의 Methylene Blue 흡착특성

  • Do, Ji-Young (Department of Environmental Engineering, Kwangwoon University) ;
  • Kim, Dong-Su (Department of Environmental Engineering, Kwangwoon University) ;
  • Park, Kyung-Chul (Department of Environmental Engineering, Kwangwoon University) ;
  • Park, Sam-Bae (Department of Environmental Engineering, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University) ;
  • Yang, Jae-Kyu (Department of Environmental Engineering, Kwangwoon University)
  • 도지영 (광운대학교 환경공학과) ;
  • 김동수 (광운대학교 환경공학과) ;
  • 박경철 (광운대학교 환경공학과) ;
  • 박삼배 (광운대학교 환경공학과) ;
  • 장윤영 (광운대학교 환경공학과) ;
  • 양재규 (광운대학교 환경공학과)
  • Received : 2022.08.23
  • Accepted : 2022.09.14
  • Published : 2022.09.30

Abstract

In order to improve water quality of the water system contaminated with dyes, biochars prepared using discarded waste resources were applied in this study. Biochars with a large specific surface area were manufactured using street tree pruning products or waste wood, and were applied to remove an organic dye in synthetic water. Biochars were made by pyrolysis of typical street tree porch products (Platanas, Ginkgo, Aak) and waste wood under air-controlled conditions. Methylene blue (MB), which is widely used in phosphofibers, paper, leather, and cotton media, was selected in this study. The adsorption capacity of Platanas for MB was the highest and the qmax value obtained using the Langmuir model equation was 78.47 mg/g. In addition, the adsorption energy (E) (kJ/mol) of MB using the Dubinin-Radushkevich (D-R) model equation was 4.891 kJ/mol which was less than 8 kJ/mol (a criteria distinguishing physical adsorption from chemical adsorption). This result suggests a physical adsorption with weak interactions such as van der Waals force between the biochar and MB. In addition, the physical adsorption may resulted from that Platanas-based biohar has the largest specific surface area and pore volume. The ∆G value obtained through the adsorption experiment according to temperature variation was -3.67 to -7.68, which also suggests a physical adsorption. Considering these adsorption results, the adsorption of MB onto Platanas-based biochar seems to occur through physical adsorption. Overall, it was possible to suggest that adsorption capacity of the biochr prepared from this study was equal to or greater than that of commercial activated carbon reported in other studies.

수계에 오염된 색도 물질을 더욱 효율적으로 처리하고자 버려지는 폐자원을 이용하여 흡착제인 바이오차를 제조하고 적용하는 방안을 모색하고자 하였다. 이에 가로수 전정부산물이나 폐목재를 활용하여 넓은 비표면적을 가지고 있는 바이오차를 제조하고 이를 이용하여 색도물질 제거에 적용하였다. 대표적인 가로수 전정부산물(플라타너스, 은행나무, 참나무)과 폐목재를 산소가 없는 조건에서 열분해하여 바이오차를 제조하였으며, 제거대상 물질로는 방향족 고리를 가지고 있어서 생물학적 분해가 어렵고, 물리적 처리와 화학적 처리시 제거효율이 떨어지는 것으로 알려져 있는 녹청색의 유기염료로 주로 인피섬유에 사용되며, 종이, 가죽과 면의 매염에 사용되기도 하는 메틸렌블루(MB)를 선정하였다. 실험결과 플라타너스 기반 바이오차가 제일 높은 흡착능을 보였으며, Langmuir 모델식을 이용하여 구한 qmax 값은 78.47 mg/g으로 나타났다. 또한 물리적 흡착과 화학적 흡착을 구별하는데 사용되는 Dubinin-Radushkevich(D-R) 모델식을 이용하여 흡착에너지(E) (kJ/mol)를 구한 결과 MB에 대한 흡착에너지(E) 값은 4.891 kJ/mol로 8 kJ/mol(물리흡착과 화학흡착의 기준 값) 보다 작았으며, 이는 바이오차와 MB 염료 사이에 van der Waals와 같은 약한 결합이 존재하는 물리흡착임을 알 수 있었다. 반응온도 변화에 따른 흡착실험을 통해 얻은 ∆G의 값은 -3.67~7.68 kJ/mol으로서 물리적 흡착반응 영역에 해당함을 확인하여, 본 연구에서 제조된 플라타너스 기반 바이오차의 MB 흡착메커니즘은 넓은 비표면적을 이용한 물리적 흡착임을 제시할 수 있었다. 또한 타 연구에서 제시된 상업용 활성탄과 비교하여도 동등 이상의 흡착능력을 보였다.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부의 재원으로 한국연구재단(과제번호NRF-2021R1F1A1046647)의 일부 지원을 받아 수행되었으며, 일부 2021년도 광운대학교 우수연구자 지원 사업에 의해 연구되었음

References

  1. The Munhwa Ilbo, Gyeonggi Provincial Government installs color measuring instruments to improve water quality in the Hantan River and monitors pollutant emissions, http://www.munhwa.com/news (Accession date: February 23, 2022)
  2. The Kyeongin Ilbo, The lamentation of Hantan River colored with dark red. The challenge of more than 15 years is improving color, http://www.kyeongin.com/main (Accession date: July 25, 2022)
  3. The Kyeongin Ilbo, Gyeonggi Provincial Government continued efforts to improve the color of the Hantan River and to implement effective policies and projects, http://www.kyeongin.com/main (Accession date: July 31, 2022)
  4. Korea Forest Service, Forest Service_Status of Street Tree Creation (as of 2019, by city and province), (2020). https://www.data.go.kr/data/15068333/fileData.do
  5. Kim, D. S., "A study on the stabilization effect of soil contaminated with arsenic and heavy metals by different types of iron oxide-biochar (IOBC)", Ph.D. dissertation, Kwangwoon University. (2021).
  6. Gil, T. H., Lee, W. H. and Ahn, J. H., "Adsorption of Methylene Blue from Aqueous Solution by Pumpkin-Seed Residue", Journal of Korean Soc Environ Eng, 42(1), pp. 10-18. (2020). https://doi.org/10.4491/ksee.2020.42.1.10
  7. Oh, H. S. and Chang, J. S., "Comparison of Cation Anion Dye Removal Characteristics between Kelpbased Magnetic Biochar and Pine-based Magnetic Biochar", Journal of Korean Soc Environ Eng, 42(6), pp. 308-318. (2020). https://doi.org/10.4491/ksee.2020.42.6.308
  8. Lee, G. B., Kim, H. J., Park, S. G. and Ok, Y. S., "Adsorption of Methylene Blue by Soybean Stover and Rice Hull Derived Biochars Compared to that by Activated Carbon", Journal of Korean Society on Water Environment, 32, pp. 291-296. (2016). https://doi.org/10.15681/KSWE.2016.32.3.291
  9. Simonin, J.-P., "On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics", Chemical Engineering Journal, 300, pp. 254-263. (2016). https://doi.org/10.1016/j.cej.2016.04.079
  10. Ho, Y. S. and Mckay, G., "Pseudo-second order model for sorption processes", Process Biochemistry, 34, pp. 451-465. (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  11. Tu, Y.-J., You, C.-F., Zhang, Z., Duan, Y., Fu, J. and Xu, D., "Strontium Removal in Seawater by Means of Composite Magnetic Nanoparticles Derived from Industrial Sludge", Water, 8, p. 357. (2016). https://doi.org/10.3390/w8080357
  12. Pavan, F. A., Mazzocato, A. C. and Gushikem, Y., "Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent", Bioresource Technology, 99(8), pp. 3162-3165. (2008). https://doi.org/10.1016/j.biortech.2007.05.067
  13. Yi, X., Xu, Z., Liu, Y., Guo, X., Ou, M. and Xu, X., "Highly efficient removal of uranium(vi) from wastewater by polyacrylic acid hydrogels", RSC Advances, 7, pp. 6278-6287. (2017). https://doi.org/10.1039/C6RA26846C
  14. Dada, A.O., "Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk", IOSR Journal of Applied Chemistry, 3, pp. 38-45. (2012). https://doi.org/10.9790/5736-0313845
  15. Zhong, Z., Yu, G., Mo, W., Zhang, C., Huang, H., Li, S., Gao, M., Lu, X., Zhang, B. and Zhu, H., "Enhanced phosphate sequestration by Fe(III) modified biochar derived from coconut shell", RSC Advances, 9, pp. 10425-10436. (2019). https://doi.org/10.1039/c8ra10400j
  16. Dogan, M., Alkan, M., Demirbas, O., Ozdemir, Y. and Ozmetin, C., "Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions", Chemical Engineering Journal, 124, pp. 89-101. (2006). https://doi.org/10.1016/j.cej.2006.08.016
  17. Singh, T. S. and Pant, K. K., "Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina", Separation and Purification Technology, 36, pp. 139-147. (2004). https://doi.org/10.1016/S1383-5866(03)00209-0