DOI QR코드

DOI QR Code

초음파 조사시간에 따른 Microcystis aeruginosa의 성장억제 평가

Evaluation of Growth Inhibition for Microcystis aeruginosa with Ultrasonic Irradiation Time

  • 강은별 (한밭대학교 건설환경공학과) ;
  • 주진철 (한밭대학교 건설환경공학과) ;
  • 장소예 (한밭대학교 환경공학과) ;
  • 고현우 (한밭대학교 건설환경공학과) ;
  • 박정수 (한밭대학교 건설환경공학과) ;
  • 정무일 ((주)애드소닉) ;
  • 이동호 (한밭대학교 모바일융합공학과)
  • Kang, Eun Byeol (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Joo, Jin Chul (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Jang, So Ye (Environmental Engineering, Hanbat National University) ;
  • Go, Hyeon Woo (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Park, Jung Su (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Jeong, Moo Il (Adsonic) ;
  • Lee, Dong Ho (Department of Mobile Convergence Engineering, Hanbat National University)
  • 투고 : 2022.09.01
  • 심사 : 2022.09.20
  • 발행 : 2022.09.30

초록

초음파 (ultrasonic) 조사시간 (irradiation time)에 따른 Microcystis aeruginosa (M. aeruginosa)의 성장억제 (growth inhibition) 효과를 대용량 (10 L) 조류 시료를 활용해 다양한 초음파 조사시간 동안 (0.5, 1, 1.5, 2, 2.5, 3 hr) 실험실 규모 (lab-scale) 실험을 진행하였다. Chl-a와 M. aeruginosa 개체수 (cell number) 분석 결과, 초음파 조사 종료 이후 모든 실험군에서 Chl-a와 개체수가 감소되어 조류 성장억제가 관찰되었으며, 초음파 조사시간이 2시간 미만인 실험군 (T_B, T_C, T_D)은 저감 이후 조류의 급격한 재성장 (regrowth)이 관측되었으나, 조사시간이 2시간 이상인 실험군 (T_E, T_F, T_G)은 2시간 미만 조사한 실험군 대비 조류성장억제가 1 - 2일 더 지속되는 것을 확인하였다. 또한, 조류의 개체수가 초기 개체수까지 회복 시간 (recovery time)을 검토한 결과 조사시간 2시간을 기준으로 실험군 T_B (0.5 hr)는 7일, T_C (1 hr)와 T_D (1.5 hr)는 약 20일, T_E, T_F, T_G (≥ 2 hr)는 약 30일이 소요되어 초음파 조사 종료 후 초기 개체수까지의 회복 시간의 차이를 확인하였다. 비성장속도 (𝜇)와 일차분해속도(𝜅)를 도출한 결과, 실험군은 성장억제 기간 동안 초음파 조사시간과 비례하여 높은 일차분해율이 도출되었으며, 조사시간이 2시간 이상인 실험군의 재성장 시 비성장속도 (𝜇)는 2시간 미만인 실험군 대비 비성장속도 (𝜇)가 상대적으로 낮은 것으로 확인되었다. 따라서 정체수역 내 장기적인 (30일) 조류 성장억제를 위해서는 최소한 2시간 이상의 초음파 조사가 필요한 것으로 판단되나, 조류 성장억제를 위한 적정 초음파 조사시간은 정체수역의 규모, 수심, 흐름속도, 조류 농도 등의 다양한 현장조건에 따라 결정돼야 하며, 실제 적용 가능성을 높이기 위한 추가 연구가 필요한 것으로 판단된다. 초음파의 영향으로 인한 M. aeruginosa의 세포 표면 및 내부형질 변화를 관찰한 결과, 조류 세포 표면 및 세포막의 손상이 명확히 관측되었으며, 대조군 대비 실험군의 M. aeruginosa의 기낭 파괴 및 교란이 확인되었다.

The growth inhibitory effect of Microcystis aeruginosa according to the ultrasonic irradiation time was evaluated using a large algae sample volume (10 L) for various ultrasonic irradiation times (0.5, 1, 1.5, 2, 2.5 and 3 hr) at a laboratory scale. Based on the analysis of Chl-a and cell number of M. aerginosa, algae growth inhibition was observed with the decrease in Chl-a and cell number in all experimental groups after the ultrasonic irradiation. For the experimental group (T_B, T_C, T_D) with an ultrasonic irradiation time of less than 2 hours, rapid regrowth of algae was observed after growth inhibition, but the experimental group (T_E, T_F, T_G) with an irradiation time of more than 2 hours successfully inhibited algal growth lasting one or two more days. Based on the comparison of the recovery time to initial cell number the experimental group (T_B, T_C, T_D) took less than 20 days whereas the experimental group (T_E, T_F, T_G) took about 30 days. Correspondingly, the experimental group showed a high first order decay rate (𝜅) in proportion to the ultrasonic irradiation time during the growth inhibition period. Additionally, the specific growth rates (𝜇) during regrowth in the experimental group with irradiation time of more than 2 hours were relatively low compared to those in the experimental group with less than 2 hours. Therefore, ultrasonic irradiation for more than 2 hours is required for long-term (30 days) inhibition of algal growth in stagnant waters. However, the appropriate ultrasonic irradiation time for algae growth inhibition should be determined according to various field conditions such as the volume of stagnant water, water depth, flow rate, algae concentration, etc. Finally, damages to the algal cell surface and cell membrane were clearly observed, and both destruction and disturbance of gas vesicles of M. aeruginosa in the experimental group were discovered, indicating the growth inhibitory effect of Microcystis aeruginosa according to the ultrasonic irradiation time was confirmed.

키워드

과제정보

본 연구는 2022년도 중소벤처기업부의 기술개발사업[G21S302588802] 지원에 의한 연구이며, 이에 대해 감사드립니다.

참고문헌

  1. Ahn, C.Y., Park, M.H., Joung, S.H., Kim, H.S., Jang, K.Y., and Oh, H.M. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environmental Science & Technology 37(13): 3031-3037. https://doi.org/10.1021/es034048z
  2. Byeon, M.S., Byun, J.H., Im, J.K., Jin, Y.H., Noh, H.R., Kim, G.S., ... and You, S.J. 2018. Molecular Biological Characteristics of Cyanobacteria Originated Off-flavor in Water (I). Han-River Water Environment Research Center National Institute of Environmental Research.
  3. Chen, G., Ding, X., and Zhou, W. 2020. Study on ultrasonic treatment for degradation of Microcystins (MCs). Ultrasonics Sonochemistry 63: 104900. https://doi.org/10.1016/j.ultsonch.2019.104900
  4. Codd, G.A., Morrison, L.F., and Metcalf, J.S. 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203(3): 264-272. https://doi.org/10.1016/j.taap.2004.02.016
  5. Dehghani, M.H. 2016. Removal of cyanobacterial and algal cells from water by ultrasonic waves-A review. Journal of Molecular Liquids 222: 1109-1114. https://doi.org/10.1016/j.molliq.2016.08.010
  6. Hallegraeff, G., Enevoldsen, H., and Zingone, A. 2021. Global harmful algal bloom status reporting. Harmful Algae 102: 101992. https://doi.org/10.1016/j.hal.2021.101992
  7. Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A., and Paerl, H.W. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4-20. https://doi.org/10.1016/j.hal.2015.12.007
  8. Jachlewski, S., Botes, M., and Cloete, T.E. 2013. The effect of ultrasound at 256 KHz on Microcystis aeruginosa, with and without gas vacuoles. Water SA 39(1): 171-172.
  9. Jang, S.Y., Joo, J.C., Kang, E.B., Ahn, C.M., Park, J., Jeong, M.I., and Lee, D.H. 2021. Evaluation of Growth Inhibition for Microcystis aeruginosa with Different Frequency of Ultrasonic Devices. Ecology and Resilient Infrastructure 8(3): 143-153. https://doi.org/10.17820/ERI.2021.8.3.143
  10. Jang, S.Y., Joo, J.C., Kang, E.B., Go, H.W., Park, J., Jeong, M.I., and Lee, D.H. 2022. Derivation of Ultrasonic Irradiation Condition to Inhibit the Growth of Microcystis Aeruginosa. Journal of Korean Society of Environmental Engineers, Eng 44(4): 101-110. https://doi.org/10.4491/KSEE.2022.44.4.101
  11. KICT. 1997. Research on optimal water quality management of Ilsan Lake
  12. Kim, G.Y., Joo, J.C., Lee, M.J., Park, J.R., Ahn, C.H., and Lee, S. 2019. Evaluation on Growth Inhibition Effect of Harmful Blue Green Algae Using TiO 2-embedded Expanded Polystyrene (TiEPS) Balls: Lab-scale Indoor/ Outdoor Experiments. Journal of Korean Society Environmental Engineers 41(11): 637-646. https://doi.org/10.4491/KSEE.2019.41.11.637
  13. Kim, M.K., Moon, B., Kim, T.K., and Zoh, K.D. 2015. A study on production & removal of microcystin, taste & odor compounds from algal bloom in the water treatment processes. The Korean Journal of Public Health 52(1): 33-42.
  14. Kong, Y., Peng, Y., Zhang, Z., Zhang, M., Zhou, Y., and Duan, Z. 2019. Removal of Microcystis aeruginosa b y ultrasound: Inactivation mechanism and release of algal organic matter. Ultrasonics Sonochemistry 56: 447-457. https://doi.org/10.1016/j.ultsonch.2019.04.017
  15. Lee, C.S., Ahn, C.Y., La, H.J., Lee, S., and Oh, H.M. 2013. Technical and strategic approach for the control of cyanobacterial bloom in fresh waters. Korean Journal of Environmental Biology 31(4): 233-242. https://doi.org/10.11626/KJEB.2013.31.4.233
  16. Lee, H.J., Park, H.K., Heo, J., Lee, H.J., and Hong, D.G. 2018. Colonial Cyanobacteria, Microcystis Cell Density Variations using Ultrasonic Treatment. Journal of Korean Society on Water Environment 34(2): 210-215. https://doi.org/10.15681/KSWE.2018.34.2.210
  17. Lee, K.H. and Lee, S.H. 2012. Monitoring of floating green algae using ocean color satellite remote sensing. Journal of the Korean Association of Geographic Information Studies 15(3): 137-147. https://doi.org/10.11108/KAGIS.2012.15.3.137
  18. Lee, T.J., Nakano, K., and Matsumura, M. 2000. A new method for the rapid evaluation of gas vacuoles regeneration and viability of cyanobacteria by flow cytometry. Biotechnology Letters 22(23): 1833-1838. https://doi.org/10.1023/A:1005653124437
  19. Li, P., Song, Y., and Yu, S. 2014. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms. Water Research 62: 241-248. https://doi.org/10.1016/j.watres.2014.05.052
  20. Li, Y., Shi, X., Zhang, Z., and Peng, Y. 2019. Enhanced coagulation by high-frequency ultrasound in Microcystis aeruginosa-laden water: Strategies and mechanisms. Ultrasonics Sonochemistry 55: 232-242. https://doi.org/10.1016/j.ultsonch.2019.01.022
  21. Ma, B., Chen, Y., Hao, H., Wu, M., Wang, B., Lv, H., and Zhang, G. 2005. Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids and Surfaces B: Biointerfaces 41(2-3), 197-201. https://doi.org/10.1016/j.colsurfb.2004.12.010
  22. Meerhoff, M., Audet, J., Davidson, T.A., De Meester, L., Hilt, S., Kosten, S., ... and Jeppesen, E. 2022. Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back. Inland Waters 1-18.
  23. Oh, H.M., Lee, S.J., Kim, J.H., Kim, H.S., and Yoon, B.D. 2001. Seasonal variation and indirect monitoring of microcystin concentrations in Daechung Reservoir, Korea. Applied and Environmental Microbiology 67(4): 1484-1489. https://doi.org/10.1128/AEM.67.4.1484-1489.2001
  24. Paerl, H.W. and Barnard, M.A. 2020. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human-and climatically-altered world. Harmful Algae 96: 101845. https://doi.org/10.1016/j.hal.2020.101845
  25. Park, H.K., Kim, H., Lee, J.J., Lee, J.A., Lee, H., Park, J.H., ... and Moon, J. 2011. Investigation of criterion on harmful algae alert system using correlation between cell numbers and cellular microcystins content of Korean toxic cyanobacteria. Journal of Korean Society on Water Environment 27(4): 491-498. https://doi.org/10.15681/KSWE.2011.27.4.13
  26. Park, J., Church, J., Son, Y., Kim, K.T., and Lee, W.H. 2017. Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms (HABs). Ultrasonics Sonochemistry 38: 326-334. https://doi.org/10.1016/j.ultsonch.2017.03.003
  27. Park, J., Son, Y., and Lee, W.H. 2019. Variation of efficiencies and limits of ultrasonication for practical algal bloom control in fields. Ultrasonics Sonochemistry 55: 8-17. https://doi.org/10.1016/j.ultsonch.2019.03.007
  28. Park, Y.M., Kwon, O.C., Park, J.W., Chung, G.Y., Lee, J.E., and Seo, E.W. 2013. Effects of low powered ultrasonic wave exposure on microcystis sp. (cyanobacteria). Korean Journal of Environmental Biology 31(2): 113-120. https://doi.org/10.11626/KJEB.2013.31.2.113
  29. Peng, Y., Zhang, Z., Kong, Y., Li, Y., Zhou, Y., Shi, X., and Shi, X. 2020. Effects of ultrasound on Microcystis aeruginosa cell destruction and release of intracellular organic matter. Ultrasonics Sonochemistry 63: 104909. https://doi.org/10.1016/j.ultsonch.2019.104909
  30. Purcell, D., Parsons, S.A., and Jefferson, B. 2013. The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp. Environmental Technology 34(17): 2477-2490. https://doi.org/10.1080/09593330.2013.773355
  31. Rajasekhar, P., Fan, L., Nguyen, T., and Roddick, F.A. 2012. Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp. Water Research 46(5): 1473-1481. https://doi.org/10.1016/j.watres.2011.11.017
  32. Sim, J.H., Seo, H.J., and Kwon, B.D. 2006. Study on the Efficiency of Algae Removal Using Ultrasonic Waves in Double Cisterns. Journal of Korean Society of Environmental Engineers 28(12): 1310-1315.
  33. Song, I.S. 2014. Dometstic and overseas algae control technology, Konetic report, 2-10.
  34. Srisuksomwong, P., Peerapornpisal, Y., Nomura, N., and Whangchai, N. 2012. Comparative ultrasonic irradiation efficiency of Microcystis aeruginosa and M. wesenbergii from surface bloom and re-flotation behavior. Chiang Mai J. Sci 39(4): 731-735.
  35. Srisuksomwong, P., Whangchai, N., Yagita, Y., Okada, K., Peerapornpisal, Y., and Nomura, N. 2011. Effects of ultrasonic irradiation on degradation of microcystin in fish ponds. International Journal of Agriculture and Biology, 13(1).
  36. Thackeray, S.J., Jones, I.D., and Maberly, S.C. 2008. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. Journal of Ecology 96(3): 523-535. https://doi.org/10.1111/j.1365-2745.2008.01355.x
  37. Wu, X., Joyce, E.M., and Mason, T.J. 2012. Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Research 46(9): 2851-2858. https://doi.org/10.1016/j.watres.2012.02.019
  38. Zhang, G., Zhang, P., Wang, B., and Liu, H. 2006. Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry 13(5): 446-450. https://doi.org/10.1016/j.ultsonch.2005.09.012