DOI QR코드

DOI QR Code

The effect of taping intervention applied to the diaphragm on the performance of anaerobic exercise in 30 seconds: pilot study

횡격막에 적용된 테이핑 처치가 30초간의 무산소 운동수행력에 미치는 영향: pilot study

  • 최현석 (전주대학교 스포츠의학과) ;
  • 조일영 (전주대학교 의과학대학 운동처방학과)
  • Received : 2022.08.24
  • Accepted : 2022.09.20
  • Published : 2022.09.28

Abstract

The purpose of this study was to investigated the effect of taping intervention applied to the diaphragm on the anaerobic performance in 30 seconds. 18 healthy college students were randomly divided into experimental group(KT=9) and control group(Sham=9). In both groups, pre and post measurement was performed by wingate test, and post measurement was performed with taping application after a week rest. The statistics between two groups on the rate of change pre and post were analyzed through Mann-Whitney U test. Statistically, it showed that only the average power(AP) of control group was significantly different. This means that diaphragmatic taping did not affect the performance of anaerobic exercise for 30 seconds. However, considering the increase in aerobic metabolism during long-term anaerobic exercise longer than 30 seconds, further studies on anaerobic exercise performance within various time ranges are needed.

본 연구는 횡격막에 적용된 테이핑 처치가 30초간의 무산소 운동수행력에 미치는 영향을 알아보고자 실시하였다. 건강한 대학생 18명을 대상으로 실험군(KT)과 대조군(Sham)에 각각 9명씩 무작위 할당되었다. 두 그룹 모두 윙게이트 검사 기반의 사전 측정이 이루어지고 1주일 휴식 후 처치와 함께 사후 측정이 실시되었다. 두 집단간 변인들의 통계는 사전, 사후값의 변화율을 Mann-Whitney U검정으로 실시하였고, 그 결과 대조군의 평균 파워(AP)에서만 통계적으로 유의한 차이가 나타났다. 이는 횡격막 테이핑이 30초 동안의 무산소 운동 수행에 영향을 미치지 않았음을 의미한다. 하지만 30초보다 긴 장기간 무산소 운동에서 유산소 대사가 증가함을 고려할 때 이후 다양한 시간 범위 내 무산소 운동 수행에 대한 추가 연구가 필요할 것으로 생각된다.

Keywords

References

  1. National Institutes of Health, National Heart, Lung, and Blood Institute (June 2006). "Your Guide to Physical Activity and Your Heart". U.S. : Department of Health and Human Services
  2. J. S. Baker, M. C. McCormick & R. A. Robergs. (2010). Interaction among skeletal muscle metabolic energy systems during intense exercise. Journal of nutrition and metabolism. 2010, 1-13. DOI : 10.1155/2010/905612
  3. H. C. Chang, I. S. Chang & M. S. Lee. (1989). Characteristics of anaerobic exercise and aerobic exercise and exercise prescription. Journal of the Korean Physical Therapy Association, 10(1), 83-87.
  4. J. Robineau, N. Babault, J. Piscione, M. Lacome & A. X. Bigard. (2016). Specific training effects of concurrent aerobic and strength exercises depend on recovery duration. The Journal of Strength &Conditioning Research, 30(3), 672-683. DOI : 10.1519/JSC.0000000000000798
  5. B. C. Sporer & H. A. Wenger. (2003). Effects of aerobic exercise on strength performance following various periods of recovery. The Journal of Strength &Conditioning Research, 17(4), 638-644. https://doi.org/10.1519/1533-4287(2003)017<0638:EOAEOS>2.0.CO;2
  6. K. Wasserman. (1994). Coupling of external to cellular respiration during exercise: the wisdom of the body revisited. American Journal of Physiology-Endocrinology And Metabolism, 266(4), E519-E539. DOI : 10.1152/ajpendo.1994.266.4.E519
  7. J. Kocjan, M. Adamek, B. Gzik-Zroska, D. Czyzewski & M. Rydel. (2017). Network of breathing. Multifunctional role of the diaphragm: a review. Advances in respiratory medicine, 85(4), 224-232. DOI : 10.5603/ARM.2017.0037
  8. B. D. Johnson, M. A. Babcock, O. E. Suman & J. A. Dempsey. (1993). Exercise-induced diaphragmatic fatigue in healthy humans. The Journal of physiology, 460(1), 385-405. DOI : 10.1113/jphysiol.1993.sp019477
  9. K. Kase. (2003). Clinical therapeutic applications of the Kinesio taping method. Albuquerque.
  10. S. Fereydounnia et al. (2019). Improvements in strength and functional performance after Kinesio taping in semi-professional male soccer players with and without functional ankle instability. The foot, 41, 12-18. DOI : 10.1016/j.foot.2019.06.006
  11. S. A. Arslan, A. D. Daskapan, N. O. Pekyavas & E. Sakizli. (2018). Effects of Kinesio Taping Applied to Diaphragm Muscle on Aerobic Exercise Capacity and Pulmonary Function in Sedentary Individuals. Anatolian Clinic the Journal of Medical Sciences, 23(2), 68-72. DOI : 10.21673/anadoluklin.385414
  12. O. Serresse, G. Lortie, C. Bouchard & M. R. Boulay. (1988). Estimation of the contribution of the various energy systems during maximal work of short duration. International journal of sports medicine, 9(06), 456-460. DOI : 10.1055/s-2007-1025051
  13. H. E. Hamed, A. Ahmed & E. Mariam. (2018). Primary Versus Accessory Respiratory Muscles Response to Kinesio Tape in Normal Subjects. The Medical Journal of Cairo University, 86(December), 4009-4013. https://doi.org/10.21608/mjcu.2018.62197
  14. H. Sozen & C. Akyildiz. (2018). The effects of aerobic and anaerobic training on aerobic and anaerobic capacity. Uluslararasi Anadolu Spor Bilimleri Dergisi, 3(3), 331-337. DOI : 10.5505/jiasscience.2018.68077
  15. M. Hargreaves & L. L. Spriet. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817-828. https://doi.org/10.1038/s42255-020-0251-4
  16. N. Fujii, Y. Nishida, T. Ogawa, S. Tanigawa & T. Nishiyasu. (2018). Effects of work-matched moderate-and high-intensity warm-up on power output during 2-min supramaximal cycling. Biology of sport, 35(3), 223-228. DOI : 10.5114/biolsport.2018.74633
  17. A. Aliverti. (2016). The respiratory muscles during exercise. Breathe, 12(2), 165-168. https://doi.org/10.1183/20734735.008116
  18. S. N. Hussain & R. L. Pardy. (1985). Inspiratory muscle function with restrictive chest wall loading during exercise in normal humans. Journal of Applied Physiology, 58(6), 2027-2032. DOI : 10.1152/jappl.1985.58.6.2027
  19. P. B. Gastin. (2001). Energy system interaction and relative contribution during maximal exercise. Sports medicine, 31(10), 725-741. https://doi.org/10.2165/00007256-200131100-00003