DOI QR코드

DOI QR Code

THE N-ORDER ITERATIVE SCHEME FOR A SYSTEM OF NONLINEAR WAVE EQUATIONS ASSOCIATED WITH THE HELICAL FLOWS OF MAXWELL FLUID

  • Received : 2021.02.16
  • Accepted : 2022.02.25
  • Published : 2022.09.01

Abstract

In this paper, we study a system of nonlinear wave equations associated with the helical flows of Maxwell fluid. By constructing a N-order iterative scheme, we prove the local existence and uniqueness of a weak solution. Furthermore, we show that the sequence associated with N-order iterative scheme converges to the unique weak solution at a rate of N-order.

Keywords

Acknowledgement

The authors wish to express their sincere thanks to the referees and the editor for the valuable comments and suggestions.

References

  1. H. Brezis, Functional Analysis, Sobolev spaces and partial differential equations, Springer New York Dordrecht Heidelberg London, 2010.
  2. C. Fetecau, C. Fetecau, M. Jamil and A. Mahmood, Flow of fractional Maxwell fluid between coaxial cylinders, Archiver Appl. Mech., 81 (2011), 1153-1163. https://doi.org/10.1007/s00419-011-0536-x
  3. C. Fetecau, C. Fetecau, M. Khan and D. Vieru, Decay of a potential vortex in a generalized Oldroyd-B fluid, Appl. Math. Comput., 205(1) (2008), 497-506.
  4. T. Hayat, C. Fetecau and M. Sajid, On MHD Transient flow of a Maxwell fluid in a porous medium and rotating frame, Physics Lett. A., 372(10) (2008), 1639-1644. https://doi.org/10.1016/j.physleta.2007.10.036
  5. M. Jamil and C. Fetecau, Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary, Nonlinear Anal. RWA., 11(5) (2010), 4302-4311. https://doi.org/10.1016/j.nonrwa.2010.05.016
  6. M. Jamil, C. Fetecau, N.A. Khan and A. Mahmood, Some exact solutions for helical flows of Maxwell fluid in an annular pipe due to accelerated shear stresses, Inter. J. Chemi. Reac. Eng., 9 (2011), Article A20.
  7. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol.1. Academic Press, New York, 1969.
  8. J.L. Lions, Quelques methodes de resolution des problemes aux limites nonlineaires, Dunod; Gauthier-Villars, Paris, 1969.
  9. N.T. Long, On the nonlinear wave equation utt - B(t, ||u||2, ||ux||2)uxx = f(x, t, u, ux, ut, ||u||2, ||ux||2) associated with the mixed homogeneous conditions, J. Math. Anal. Appl., 306(1) (2005), 243-268. https://doi.org/10.1016/j.jmaa.2004.12.053
  10. N.T. Long and L.X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition, Nonlinear Anal. TMA., 67(3) (2007), 842-864. https://doi.org/10.1016/j.na.2006.06.044
  11. V.T.T. Mai, N.A. Triet, L.T.P. Ngoc and N.T. Long, Existence, blow-up and exponential decay for a nonlinear Kirchhoff-Carrier-Love equation with Dirichlet conditions, Nonlinear Funct. Anal. Appl., 25(4) (2020), 617-655.
  12. L.T.P. Ngoc and N.T. Long, Linear approximation and asymptotic expansion of solutions in many small parameters for a nonlinear Kirchhoff wave equation with mixed nonhomogeneous conditions, Acta Appl. Math., 112(2) (2010), 137-169. https://doi.org/10.1007/s10440-009-9555-9
  13. L.T.P. Ngoc, H.T.H. Dung, P.H. Danh and N.T. Long, On a m-order nonlinear integrodifferential equation in N variables, Nonlinear Funct. Anal. Appl., 24(4) (2019), 775-790.
  14. L.T.P. Ngoc, N.A. Triet and N.T. Long, On a nonlinear wave equation involving the term -${\frac{{\partial}}{{\partial}_x}}$(µ(x,t,u,||ux||2)ux) : Linear approximation and asymptotic expansion of solution in many small parameters, Nonlinear Anal. RWA., 11(4) (2010), 2479-2501. https://doi.org/10.1016/j.nonrwa.2009.08.005
  15. L.T.P. Ngoc, B.M. Tri and N.T. Long, An N-order iterative scheme for a nonlinear wave equation containing a nonlocal term, Filomat, 31(6) (2017), 1755-1767. https://doi.org/10.2298/FIL1706755N
  16. L.T.P. Ngoc, L.H.K. Son, T.M. Thuyet and N.T. Long, An N - order iterative scheme for a nonlinear Carrier wave equation in the annular with Robin-Dirichlet conditions, Nonlinear Funct. Anal. Appl., 22(1) (2017), 147-169.
  17. N.H. Nhan, T.T. Nhan, L.T.P. Ngoc and N.T. Long, Local existence and exponential decay of solutions for a nonlinear pseudoparabolic equation with viscoelastic term, Nonlinear Funct. Anal. Appl., 26(1) (2021), 35-64.
  18. N.H. Nhan, N.T. Than, L.T.P. Ngoc and N.T. Long, A N-order iterative scheme for the Robin problem for a nonlinear wave equation with the source term containing the unknown boundary values, Nonlinear Funct. Anal. Appl., 22(3) (2017), 573-594.
  19. H. Qi, and H. Jin, Unsteady helical flow of a generalized Oldroyd-B fluid with fractional derivative, Nonlinear Anal. RWA., 10 (2009), 2700-2708. https://doi.org/10.1016/j.nonrwa.2008.07.008
  20. R.E. Showater, Hilbert space methods for partial differential equations, Electronic J. Diff. Equ., Monograph 01, 1994.
  21. S.H.A.M. Shah, Some helical flows of a Burgers fluid with fractional derivative, Meccanica, 45(2) (2010), 143-151. https://doi.org/10.1007/s11012-009-9233-z
  22. D. Tong, X. Zhang and Xinhong Zhang, Unsteady helical flows of a generalized Oldroyd-B fluid, J. Non-Newtonian Fluid Mech., 156 (2009), 75-83. https://doi.org/10.1016/j.jnnfm.2008.07.004
  23. D. Tong, Starting solutions for oscillating motions of a generalized Burgers' fluid in cylindrical domains, Acta Mech., 214(3-4) (2010), 395-407. https://doi.org/10.1007/s00707-010-0288-7
  24. L.X. Truong, L.T.P. Ngoc, C.H. Hoa and N.T. Long, On a system of nonlinear wave equations associated with the helical flows of Maxwell fluid, Nonlinear Anal. RWA., 12(6) (2011), 3356-3372.
  25. L.X. Truong, L.T.P. Ngoc and N.T. Long, High-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed homogeneous conditions, Nonlinear Anal. TMA., 71(1-2) (2009), 467-484. https://doi.org/10.1016/j.na.2008.10.086