Acknowledgement
The authors wish to express their sincere thanks to the referees and the editor for the valuable comments and suggestions.
References
- H. Brezis, Functional Analysis, Sobolev spaces and partial differential equations, Springer New York Dordrecht Heidelberg London, 2010.
- C. Fetecau, C. Fetecau, M. Jamil and A. Mahmood, Flow of fractional Maxwell fluid between coaxial cylinders, Archiver Appl. Mech., 81 (2011), 1153-1163. https://doi.org/10.1007/s00419-011-0536-x
- C. Fetecau, C. Fetecau, M. Khan and D. Vieru, Decay of a potential vortex in a generalized Oldroyd-B fluid, Appl. Math. Comput., 205(1) (2008), 497-506.
- T. Hayat, C. Fetecau and M. Sajid, On MHD Transient flow of a Maxwell fluid in a porous medium and rotating frame, Physics Lett. A., 372(10) (2008), 1639-1644. https://doi.org/10.1016/j.physleta.2007.10.036
- M. Jamil and C. Fetecau, Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary, Nonlinear Anal. RWA., 11(5) (2010), 4302-4311. https://doi.org/10.1016/j.nonrwa.2010.05.016
- M. Jamil, C. Fetecau, N.A. Khan and A. Mahmood, Some exact solutions for helical flows of Maxwell fluid in an annular pipe due to accelerated shear stresses, Inter. J. Chemi. Reac. Eng., 9 (2011), Article A20.
- V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol.1. Academic Press, New York, 1969.
- J.L. Lions, Quelques methodes de resolution des problemes aux limites nonlineaires, Dunod; Gauthier-Villars, Paris, 1969.
- N.T. Long, On the nonlinear wave equation utt - B(t, ||u||2, ||ux||2)uxx = f(x, t, u, ux, ut, ||u||2, ||ux||2) associated with the mixed homogeneous conditions, J. Math. Anal. Appl., 306(1) (2005), 243-268. https://doi.org/10.1016/j.jmaa.2004.12.053
- N.T. Long and L.X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition, Nonlinear Anal. TMA., 67(3) (2007), 842-864. https://doi.org/10.1016/j.na.2006.06.044
- V.T.T. Mai, N.A. Triet, L.T.P. Ngoc and N.T. Long, Existence, blow-up and exponential decay for a nonlinear Kirchhoff-Carrier-Love equation with Dirichlet conditions, Nonlinear Funct. Anal. Appl., 25(4) (2020), 617-655.
- L.T.P. Ngoc and N.T. Long, Linear approximation and asymptotic expansion of solutions in many small parameters for a nonlinear Kirchhoff wave equation with mixed nonhomogeneous conditions, Acta Appl. Math., 112(2) (2010), 137-169. https://doi.org/10.1007/s10440-009-9555-9
- L.T.P. Ngoc, H.T.H. Dung, P.H. Danh and N.T. Long, On a m-order nonlinear integrodifferential equation in N variables, Nonlinear Funct. Anal. Appl., 24(4) (2019), 775-790.
-
L.T.P. Ngoc, N.A. Triet and N.T. Long, On a nonlinear wave equation involving the term -
${\frac{{\partial}}{{\partial}_x}}$ (µ(x,t,u,||ux||2)ux) : Linear approximation and asymptotic expansion of solution in many small parameters, Nonlinear Anal. RWA., 11(4) (2010), 2479-2501. https://doi.org/10.1016/j.nonrwa.2009.08.005 - L.T.P. Ngoc, B.M. Tri and N.T. Long, An N-order iterative scheme for a nonlinear wave equation containing a nonlocal term, Filomat, 31(6) (2017), 1755-1767. https://doi.org/10.2298/FIL1706755N
- L.T.P. Ngoc, L.H.K. Son, T.M. Thuyet and N.T. Long, An N - order iterative scheme for a nonlinear Carrier wave equation in the annular with Robin-Dirichlet conditions, Nonlinear Funct. Anal. Appl., 22(1) (2017), 147-169.
- N.H. Nhan, T.T. Nhan, L.T.P. Ngoc and N.T. Long, Local existence and exponential decay of solutions for a nonlinear pseudoparabolic equation with viscoelastic term, Nonlinear Funct. Anal. Appl., 26(1) (2021), 35-64.
- N.H. Nhan, N.T. Than, L.T.P. Ngoc and N.T. Long, A N-order iterative scheme for the Robin problem for a nonlinear wave equation with the source term containing the unknown boundary values, Nonlinear Funct. Anal. Appl., 22(3) (2017), 573-594.
- H. Qi, and H. Jin, Unsteady helical flow of a generalized Oldroyd-B fluid with fractional derivative, Nonlinear Anal. RWA., 10 (2009), 2700-2708. https://doi.org/10.1016/j.nonrwa.2008.07.008
- R.E. Showater, Hilbert space methods for partial differential equations, Electronic J. Diff. Equ., Monograph 01, 1994.
- S.H.A.M. Shah, Some helical flows of a Burgers fluid with fractional derivative, Meccanica, 45(2) (2010), 143-151. https://doi.org/10.1007/s11012-009-9233-z
- D. Tong, X. Zhang and Xinhong Zhang, Unsteady helical flows of a generalized Oldroyd-B fluid, J. Non-Newtonian Fluid Mech., 156 (2009), 75-83. https://doi.org/10.1016/j.jnnfm.2008.07.004
- D. Tong, Starting solutions for oscillating motions of a generalized Burgers' fluid in cylindrical domains, Acta Mech., 214(3-4) (2010), 395-407. https://doi.org/10.1007/s00707-010-0288-7
- L.X. Truong, L.T.P. Ngoc, C.H. Hoa and N.T. Long, On a system of nonlinear wave equations associated with the helical flows of Maxwell fluid, Nonlinear Anal. RWA., 12(6) (2011), 3356-3372.
- L.X. Truong, L.T.P. Ngoc and N.T. Long, High-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed homogeneous conditions, Nonlinear Anal. TMA., 71(1-2) (2009), 467-484. https://doi.org/10.1016/j.na.2008.10.086