DOI QR코드

DOI QR Code

항공기용 외부연료탱크 진동모드 측정시험

Vibration Mode Measurement Test of External Fuel Tank for Aircraft

  • 투고 : 2022.02.16
  • 심사 : 2022.06.22
  • 발행 : 2022.08.31

초록

진동모드 측정시험은 대상 시험체의 고유진동 특성을 측정하는 시험으로써, 측정된 고유모드 특성은 수치해석 결과와의 비교를 통해 수치해석의 신뢰성을 검증하고, 필요시 동특성 해석에 사용하는 시험체의 수치해석 모델을 보완하는데 활용된다. 본 연구에서는 진동모드 측정시험과 유한요소 모델을 이용한 수치해석을 통해서 외부연료탱크의 고유주파수와 고유모드를 각각 구하고, 그 결과를 비교하여 항공기 전기체 모델에 적용하고자 하는 외부연료탱크의 수치해석 모델에 대한 신뢰성을 검증하고자 한다. 시험체의 진동모드 측정을 위해 번지코드를 이용하여 시험체에 대한 자유경계 조건을 모사하였다. 그리고, 시험체에 3축 가속도계를 설치하고 임팩트 해머로 가진하여 시험체의 응답특성을 측정하였다. 시험결과로, 응답 가속도에 대한 주파수 응답해석을 수행한 후, 시험체의 고유주파수와 해당 진동모드를 확인하였다. 그리고, 시험과 수치해석을 통해 구해진 고유주파수와 진동모드를 비교하여 수치해석 모델에 대한 신뢰성을 검증하였다.

The vibration mode measurement test measures the natural vibration characteristics of the target specimen. The measured natural mode characteristics are compared with the numerical analysis result to verify the reliability of the numerical analysis. If necessary, it is used to supplement the numerical analysis model of the specimen used for the dynamic characteristic analysis. In this paper, the natural frequency and natural mode of the external fuel tank are respectively obtained through the vibration mode measurement test and the numerical analysis, using the finite element model. The results are compared to verify the reliability of the numerical analysis model of the external fuel tank to apply to the entire aircraft model. To measure the vibration mode of the test specimen, a bungee cord was used, to simulate the free boundary condition for the test specimen. And, 3-axis accelerometers were installed on the test specimen. The response characteristics of the test specimen were measured, by excitation with an impact hammer. As a result of the test, after performing the frequency response analysis on the response acceleration, the natural frequency of the test specimen and its vibration mode were confirmed. The reliability of the numerical analysis model was verified by comparing the frequency and vibration mode, obtained through the test and the numerical analysis.

키워드

참고문헌

  1. J.S. Lim, S.W. Lee, T.U. Kim, "Updating HALE UAV Analysis Model Based on Ground Vibration Test Results," The Korean Society for Noise and Vibration Engineering 2017 fall Conference, p. 175, Chungnam Yesan, Korea, 18~20 Oct. 2017
  2. S.W. Lee, S.W. Park, J.W. Shin, "Flutter Analysis of a High-Altitude Solar Powered UAV," The Transactions of the Korean Society of Mechanical Engineers A, vol. 41, no. 12, pp. 1215-1221, 2017. DOI: https://doi.org/10.3795/KSME-A.2017.41.12.1215
  3. S.W. Lee, "Flutter Analysis of the OPPAV Full Scale Model," The Korean Society of Mechanical Engineers Annual Meeting 2021, pp. 1752-1753, Gwangju, Korea, 3~6 Nov. 2021.
  4. B.H. Jeon, H.W. Kang, J.J. Lee, Y.S. Lee, "Ground Vibration Tests of Smart UAV Airframe Structure," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 38, no. 5, pp. 482-489, 2010. DOI: https://doi.org/10.5139/JKSAS.2010.38.5.482
  5. S.K. Paek, Y.J. Choi, "Flutter Analysis Model Tuning of KC-100 Aircraft with the Ground Vibration Test Resutls," Proceedings of the Korean Society for Noise and Vibration Engineering Conference 2011, pp. 191-195, Daegu, Korea, 27~28 Oct. 2011.
  6. S.W. Lee, S.K. Paek, S.C. Kim, I.H. Hwang, "Flutter Analysis of Small Aircraft using Full Airframe Dynamic FE Model," Proceedings of the KSME 2008 Fall Annual Meeting, pp. 424-429, Pyeongchang, Korea, 5-7 Nov. 2008.
  7. J. Park, Y. Moon, S. Jung, I. Kang, "A Study on the Vibration Modal Testing and Analytical Model Updating of Liquid Rocket Engine of KSLV-II," 8th European Conference for Aeronautics and Space Sciences(EUCASS), Madrid, Spain, 1-4 July 2019. DOI: 10.13009/EUCASS2019-1036
  8. H.J. Yoo, K.H. Byun, K.Y. Park "The Ground Vibration Test on an Aircraft and FE Model Update," Journal of the Korean Society for Noise and Vibration Engineering, vol. 8, no. 4, pp. 690-699, 1998.
  9. K.H. Byun, C.Y. Park, J.H. Kim, "Ground Vibration Test of KF-16D," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 33, no. 5, pp. 41-49, 2005. DOI: https://doi.org/10.5139/JKSAS.2005.33.5.041
  10. K.H. Byun, S.M. Jun, "Flutter Analysis of F-16 Aircraft Using Test Modal Data," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 34, no. 4, pp. 76-82, 2006. DOI: https://doi.org/10.5139/JKSAS.2006.34.4.076
  11. H.T. Lim, J.R. Kwon, K.H. Byun, H.J. Kim, J.H. Kim, "Aeroelastic Compatibility Substantiation of Aircraft External Stores Using the Dynamic Characteristic Data from Ground Vibration Test," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 45, no. 4, pp. 269-275, 2017. DOI: https://doi.org/10.5139/JKSAS.2017.45.4.269
  12. S.H. Kim, D.I. Kwak, S.U. Jung, J.H. Choi, J.H. Kim, "Ground Vibration Test for Korean Utility Helicopter," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 41, no. 6, pp. 495-501, 2013. DOI: http://dx.doi.org/10.5139/JKSAS.2013.41.6.495
  13. J.K. Park, S.H Kim, D.I Kwak, B.W Lee, "Ground Resonance Analysis for the Class of Korean Utility Helicopter," Journal of The Korean Society for Aeronautical and Space Sciences 2007 Spring Conference, pp. 890-893, 2007.
  14. M.S. Kim, J.N. Kim, Y.S. Byun, J. Kim, B.S. Kang, "Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone," Journal of the Korean Society for Precision Engineering, vol. 33, no. 9, pp. 707-714, 2016. DOI: http://dx.doi.org/10.7736/KSPE.2016.33.9.707
  15. S.C. Lee, I.S. Son, K.D. Hur, "Vibration Analyses and Design of Resonance Avoidance of the Unmanned Helicopter Master," Journal of the Korean Society for Precision Engineering, vol. 28, no. 8. pp. 951-958, 2011.
  16. S.R. Kim, W.D. Kim, "Research of Vibration Analysis and Resonance Avoidance Design of Composite Quadcopter," Composites Research, vol. 33, no. 3, pp. 133-139, 2020. DOI: https://doi.org/10.7234/composres.2020.33.3.133
  17. MIL-A-8870C, "Airplane Strength and Rigidity: Vibration, Flutter, and Divergence," 25 March 1993.