DOI QR코드

DOI QR Code

외란에 강인한 정밀공중물자수송시스템 연착륙 알고리즘 설계

Design of a Robust Precision Aerial Delivery System Soft Landing Algorithm

  • 투고 : 2022.07.15
  • 심사 : 2022.08.12
  • 발행 : 2022.08.31

초록

PADS(Precision Aerial Delivery System)은 원형 낙하산을 이용한 공중 물자수송 시스템의 낮은 착륙 정확도를 개선해줄 수 있는 장비로 AGU(Airborne Guidance Unit)을 장착하여 원하는 목적지로 안전하게 물자를 수송할 수 있다. 현재 외국에서 개발된 PADS 성능은 착륙 정확도가 CEP50 100m 범위로 보고되고 있으나 실제 지형 및 기상환경에 따라 많은 차이를 보인다. 산악지역이 많은 국내 환경에서는 국부적인 지형변화에 따른 풍향, 풍속 변화가 심하고 이는 착륙 정밀도에 영향을 미친다. 본 연구에서는 이러한 문제점을 해결하기 위해 PADS의 6DOF 비선형 모델링을 기반으로 HILS(Hardware In the Loop Simulation)를 구축하여 바람 환경에서 Ram air parachute의 기동 특성을 분석하였다. 이러한 기동 특성을 고려하여 EM(Energy Management) 기동과 FA(Final Approach) 기동을 포함한 정밀 연착륙 알고리즘을 설계하였다. PADS 시뮬레이션 결과 CEP50 40m 이내로 정밀 연착륙이 가능하였으며, 향후 이러한 연구 결과를 바탕으로 실제 PADS 투하시험을 통하여 정밀 공중 물자수송 시스템에 적용될 수 있을 것이다.

The Precision Aerial Delivery System is an instrument designed to improve the poor landing accuracy of aerial delivery system with conventional circular parachutes, and is equipped with an Airborne Guidance Unit to safely transport supplies to the desired destination. Currently, the landing accuracy of the PADS product is reported as CEP50 100m and also differs significantly, depending on the actual topography and weather environment. In this study, HILS was constructed based on the 6DOF nonlinear modeling of PADS to analyze the maneuver characteristics of Ram Air Parachute under wind environments. By using the new algorithm a precision soft landing algorithm including Energy Management and Final Approach is designed. HILS results show that it is possible to achieve a precise soft landing within CEP50 40m, and it can be exploited to develop an actual PADS drop test.

키워드

참고문헌

  1. Wegereef, J.W., Jentink, H.W. "Precision Airdrop System SPADES." In Fluid Dynamics of Personnel and Equipment Precision Delivery from Military Platforms (pp. 5-1 - 5-10). Meeting Proceedings RTO-MP-AVT-133, Paper 5. 2006, Neuilly-sur-Seine
  2. C. Toglia, M. Vendittelli, "Modeling and motion analysis of autonomous paragliders", 2008.
  3. P.B.S. Lissaman and G.J. Brown, "Apparent Mass Effects on Parafoil Dynamics", AIAA-93-1236, 1993
  4. T. W. Kim and Y. K. Song, "A Study on the Wind Estimation for Unmanned Parafoil System" Journal of the Korean Society for Aviation and Aeronautics, vol. 23, no. 1, pp. 8-15, Mar. 2015. https://doi.org/10.12985/KSAA.2015.23.1.008
  5. Yakimenko, O.A., "Statistical Snalysis of Touchdown Error for Self-Guided Aerial Payload Delivery Systems", Proceedings of 22nd AIAA Aerodynamic Decelerator Systems Technology Conference 2013, Reston, VA.
  6. Yakimenko, O.A., N. Slegers, "Optimal Control for Terminal Guidance of Autonomous Parafoils" 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar 4 - 7 May 2009, Seattle, Washington
  7. N. Slegers, "Effects of Canopy-Payload Relative Motion on Control of Autonomous Parafoils," Journal of Guidance, Control, and Dynamics, Vol 33, No 1, pp 116-125, 2010. https://doi.org/10.2514/1.44564
  8. Masahito Watanabe and Yoshimasa Ochi, "Modeling and Simulation of Nonlinear Dynamics of a Powered Paraglider", AIAA Guidance, Navigation and Control Conference and Exhibit 18 - 21 Aug.2008.
  9. Altmann, H. "Influence of Wind on Terminal Guidance and Landing Precision of Autonomous Prafoil Systems", Proceedings of the 22nd AIAA Aerodynamic Decelerator Systems Technology Conference, AIAA, Reston,VA. 2013
  10. Michael Ward, "Adaptive Glide Slope Control for Parafoil and Payload Aircraft", Master's thesis, Georgia Institute of Technology
  11. Gideon van der kolf , "Flight Control System for an Autonomous Parafoil", Master's thesis, Stellenbosch University
  12. Damian Toolhey, "Development of a Small Parafoil Vehicle for Precision Delivery", Master's thesis, Massachusetts Institute of Technology, June 2005
  13. Luders, B, Sugel, I., How, J. P., "Robust Trajectory Planning for Autonomous Parafoils under Wind Uncertainty", AIAA Infotech@Aerospace Conference, Boston, 2013.
  14. Ochi, Y., Watanabe, M. "Modeling and simulation of the dynamics of a powered paraglider", Journal of Aerospace Engineering, vol. 225, 373-386, April, 2011.
  15. Alek Gavrilovski, Michael Ward, Mark Costello, "Parafoil Glide Slope Control Using Canopy Spoilers", 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar 23 - 26 May 2011, Dublin, Ireland
  16. Dr.-Ing. Horst Altmann, Jurgen Windl, "A medium-weight demonstrator for autonomous, range-optimized aerial cargo delivery", 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, (2005).