DOI QR코드

DOI QR Code

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents

킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구

  • Kim, Sun Kyung (Resources & Materials Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kwon, Sukcheol (Resources & Materials Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Hee Seo (Resources & Materials Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Suh, Yong Jae (Resources & Materials Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yoo, Jeong Hyun (Resources & Materials Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Chang, Hankwon (Resources & Materials Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeon, Ho-SeoK (Department of Resources Recycling, Korea University of Science and Technology) ;
  • Park, In-Su (Resources & Materials Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 김선경 (한국지질자원연구원 자원활용연구본부 자원소재연구센터) ;
  • 권숙철 (한국지질자원연구원 자원활용연구본부 자원소재연구센터) ;
  • 김희서 (한국지질자원연구원 자원활용연구본부 자원소재연구센터) ;
  • 서용재 (한국지질자원연구원 자원활용연구본부 자원소재연구센터) ;
  • 유정현 (한국지질자원연구원 자원활용연구본부 자원소재연구센터) ;
  • 장한권 (한국지질자원연구원 자원활용연구본부 자원소재연구센터) ;
  • 전호석 (과학기술연합대학원대학교 자원순환공학전공) ;
  • 박인수 (한국지질자원연구원 자원활용연구본부 자원소재연구센터)
  • Received : 2022.01.25
  • Accepted : 2022.02.21
  • Published : 2022.04.30

Abstract

This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

본 연구에서는 VRFB용 고순도 오산화바나듐을 제조하기 위한 불순물 분리 정제 공정에서 킬레이트제(EDTA)의 영향을 조사하였다. 저순도 바나듐 원료를 이용하여 제조된 바나듐 용액으로부터 NH4VO3 을 침전 회수하여 제조된 최종 V2O5 분말의 순도는 99.7%로 분석되었지만 NH4VO3 침전 회수 공정에서 킬레이트제를 첨가한 경우 최종 V2O5 분말 순도가 99.9% 이상으로 향상되었다. 이러한 결과는 첨가된 킬레이트제가 불순물 이온과 반응하여 complex를 형성하고 불순물 이온이 안정화되기 때문에 침전 회수 공정에서 바나듐에 대한 선택성이 향상된 것으로 판단된다. 하지만 제조된 V2O5 분말내에는 불순물 규격 대비 K, Mn, Fe, Na 및 Al 함유량이 높아 추가적인 불순물 정제 연구가 필요하였다. 고순도 V2O5 분말을 새롭게 개발된 직접 전해공정에 적용하여 바나듐 전해액을 제조하였고 이의 특성을 상용 전해액과 비교 분석하였다. 제조된 바나듐 전해액의 순도는 불순물 K, Ca, Na, Al, Mg 및 Si 성분의 높은 함량으로 인하여 상용 전해액의 순도 99.98%보다 낮은 99.97%로 분석되었다. 따라서 고순도 V2O5 분말 및 전해액 제조 공정의 불순물 분리 정제에 대한 추가적인 최적화 연구가 수행된다면 상용화가 가능한 공정이 개발될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 21-3212-1)' 과제의 일환으로 수행되었습니다.

References

  1. Park, W. S., 2020 : Energy storage technology using Vanadium redox flow battery (VRFB), KEPRI NEWS, 292, pp.12-15.
  2. Kim, H. T., 2017 : Trends of Membranes for Vanadium Redox Flow Batteries, KIC News, 20(3), pp.28-35.
  3. Skyllas-Kazacos, M., Cao, L., Kazacos, M., et al., 2016 : Vanadium E lectrolyte Studies for the Vanadium Redox Battery-A Review, ChemSusChem, 9, pp.1521-1543. https://doi.org/10.1002/cssc.201600102
  4. Choi, C., Kim, S., Kim, R., et al., 2017 : A review of vanadium electrolytes for vanadium redox flow batteries, Renewable and Sustainable Energy Reviews, 69, pp.263-274. https://doi.org/10.1016/j.rser.2016.11.188
  5. Mongird, K., Fotedar, V., Viswanathan, V., et al., 2019 : Energy Storage Technology and Cost Characterization Report, U.S. Department of Energy.
  6. Heo, J., Han, J., Kim, S., et al., 2019 : Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries, Nature Communications, 10, pp.4412.
  7. Noack, J., Wietschel, L., Roznyatovskaya, N., et al., 2016 : Technoeconomic modeling and analysis of redox flow battery systems, Energies, 9, pp.627.
  8. Dassisti, M., Cozzolino, G., Chimienti, M., et al., 2016 : Sustainability of vanadium redox-flow batteries: Benchmarking electrolyte synthesis procedures, International Journal of Hydrogen Energy, 41, pp.16477-16488. https://doi.org/10.1016/j.ijhydene.2016.05.197
  9. Zhu, Q., Fan, C., Mu, W., et al., 2019 : System and method for purifying vanadium pentoxide, CA2973511C.
  10. Park, W. J., 2019 : Survey on actual conditions of ceramic raw materials and establishment of policies for fostering industries, Chemical Market Research Inc.(CMRI), chapter 3, section 18, pp.255.
  11. Vitolo, S., Seggiani, M., Filippi, S., et al., 2000 : Recovery of vanadium from heavy oil and Orimulsion fly ashes, Hydrometallurgy, 57, pp.141-149. https://doi.org/10.1016/S0304-386X(00)00099-2
  12. He, D., Feng, Q., Zhang, G., et al., 2007 : An environmentally-friendly technology of vanadium extraction from stone coal, Minerals Engineering, 20, pp.1184-1186. https://doi.org/10.1016/j.mineng.2007.04.017
  13. Nguyen, T.H., Lee, M.S., 2013 : Separation of molybdenum and vanadium from acid solutions by ion exchange, Hydrometallurgy, 136, pp.65-70. https://doi.org/10.1016/j.hydromet.2013.03.007
  14. Nguyen, T.H., Lee, M.S., 2014 : Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchange, Hydrometallurgy, 147-148, pp.142-147. https://doi.org/10.1016/j.hydromet.2014.05.010
  15. Barik, S.P., Park, K.H., Nam, C.W., 2014 : Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique, Journal of Environmental Management, 146, pp.22-28. https://doi.org/10.1016/j.jenvman.2014.06.032
  16. Noori, M., Rashchi, F., Babakhani, A., et al., 2014 : Selective recovery and separation of nickel and vanadium in sulfate media using mixtures of D2EHPA and Cyanex 272, Separation and Purification Technology, 136, pp.265-273. https://doi.org/10.1016/j.seppur.2014.08.038
  17. Jiang, D., Zhang, H., Xu, H., et al., 2017 : Chlorination and purification of vanadium pentoxide with anhydrous aluminum chloride, Journal of Alloys and Compounds, 709, 505-510. https://doi.org/10.1016/j.jallcom.2017.03.123
  18. Fan, C., Xu, J., Yang, H., et al., 2020 : High-purity, low-Cl V2O5 via the gaseous hydrolysis of VOCl3 in a fluidized bed, Particuology, 49, pp.9-15. https://doi.org/10.1016/j.partic.2018.12.005
  19. Podval'naya, N.V., Volkov, V.L., 2006 : Composition and formation kinetics of sodium polyvanadates in vanadium (IV, V) solutions. Russian Journal of Inorganic Chemistry, 51(3), pp.404-408.
  20. Zhang, Y. M., Bao, S. X., Liu, T., et al., 2011 : The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109, pp.116-124. https://doi.org/10.1016/j.hydromet.2011.06.002
  21. Cui, X., Zhang, G., Chen, X., et al., 2019 : Purification of V2O5 a nd i ts a pplication in a ll-vanadium r edox flow batteries, Materials Research Express, 6, 085552.
  22. Wang, M., Woo, K. D., Kim, I.Y., et al., 2007 : Separation of Fe3+ during hydrolysis of TiO2+ by addition of EDTA, Hydrometallurgy, 89, pp.319-322. https://doi.org/10.1016/j.hydromet.2007.08.012
  23. Xiong, X., Wang, Z., Wu, F., et al., 2013 : Preparation of TiO2 from ilmenite using sulfuric acid decomposition of the titania residue combined with separation of Fe3+ with EDTA during hydrolysis, Advanced Powder Technology, 24, pp.60-67 https://doi.org/10.1016/j.apt.2012.02.002
  24. Zhang, Y., Dreisinger, D., Zhang, T. A., et al., 2019 : Preparation of highly pure vanadyl sulfate electrolyte from vanadium slag leach solution with the complexing effect of EDTA on Fe(III), Hydrometallurgy, 188, pp.54-63. https://doi.org/10.1016/j.hydromet.2019.05.012
  25. Park, I.-S., Kwon, S., Hong, H. J., et al., 2020 : Method for manufacturing vanadium electrolyte, The vanadium electrolyte manufactured by the same and cell using the same, 10-2235379.
  26. Kim, S. K., Kwon, S., Hong, H. J., et al., 2021 : Study on the Manufacture of High-purity Vanadium Pentoxide and Electrolyte for a Vanadium Redox Flow Batter, Journal of The Korean Society of Mineral and Energy Resources Engineers (KSMER), 58(1), pp.44-53. https://doi.org/10.32390/ksmer.2021.58.1.044
  27. Yoon, H. S., Heo, S. J., Kim, C. J., et al., 2020 : Precipitation Characteristics of Ammonium Metavanadate from Sodium Vanadate Solution by Addition of Ammonium Chloride, J. of Korean Inst. of Resources Recycling, 29(5), pp.28-37. https://doi.org/10.7844/kirr.2020.29.5.28
  28. Yoon, H. S., Chae, S., Kim, C. J., et al., 2019 : Precipitation Behavior of Ammonium Vanadate from Solution Containing Vanadium, J. of Korean Inst. of Resources Recycling, 28(5), pp.42-50.
  29. Hart, J. R., Ethylenediaminetetraacetic Acid and Related Chelating Agents, Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH
  30. Willett, A. I., Rittmann, B.E., 2003 : Slow complexation kinetics for ferric iron and EDTA complexes make EDTA non-biodegradable, Biodegradation, 14, pp.105-121 https://doi.org/10.1023/A:1024074329955
  31. Zhang, Y., Zheng, J., Zhao, Y., et al., 2016 : Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor, Applied Surface Science, 377, pp.385-393. https://doi.org/10.1016/j.apsusc.2016.03.180
  32. Przesniak-Welenc, M., Nadolska, M., Koscielska, M., et al., 2019 : Tailoring the Size and Shape-New Path for Ammonium Metavanadate Synthesis, Materials, 12, pp.3446.
  33. Nourizadeh, H., Noori, M., Mirazimi, M., et al., 2021 : Characterization and Ethanol-Sensing Behavior of Nanostructured Vanadium Pentoxide Recovered from Oil Fly Ash, International Journal of Environmental Research, 15, pp.985-999. https://doi.org/10.1007/s41742-021-00361-x
  34. Roznyatovskaya, N., Herr, T., Kuttinger, M., et al., 2016 : Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox-flow batteries, Journal of Power Sources, 302, pp.79-83. https://doi.org/10.1016/j.jpowsour.2015.10.021