DOI QR코드

DOI QR Code

Development of Vanadium Recovery Process Using Reduction Pre-treatment from Vanadium Titanium-Magnetite (VTM) Ore

VTM광으로부터 환원 전처리를 이용한 바나듐 회수 공정 개발

  • Go, Byunghun (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeong, Dohyun (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Han, Yosep (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Seongmin (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Chu, Yeoni (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Byung-su (Resource & Materials Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeon, Ho-Seok (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 고병헌 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 정도현 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 한요셉 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 김성민 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 추연이 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 김병수 (한국지질자원연구원 자원활용연구본부 자원소재연구센터) ;
  • 전호석 (한국지질자원연구원 자원활용연구본부 자원회수연구센터)
  • Received : 2022.01.24
  • Accepted : 2022.02.17
  • Published : 2022.04.30

Abstract

The study was conducted to develop a vanadium recovery process using reduction pre-treatment in the Vanadium TitanoMagnetite (VTM) The sample for the research was provided by the Gwan-in Mine in Pocheon, Gyeonggi-do. The vanadium content of the sample is 0.54 V2O5% and vanadium is concentrated mainly in magnetite and ilmenite. Magnetic separation of the sample can increase vanadium content up to 1.10 V2O5%. To increase the vanadium content further, reduction pre-treatment was performed, which is a process of concentrating vanadium present in the iron by reducing iron in magnetite using carbon(C). Based on this reduction pre-treatment, the magnetic separation process was developed, which achieved a vanadium grade of 1.31V2O5% and 79.68% recovery. In addition, XRD analysis of the vanadium concentrate before and after reduction and the final vanadium concentrate was performed to confirm the behavior of vanadium by reduction pre-treatment.

본 연구에서는 국내에 부존된 함바나듐 티탄자철석(Vanadium TitanoMagnetite, VTM)을 대상으로 환원 전처리를 이용한 바나듐 회수 공정 개발 연구를 진행하였다. 연구에 사용된 시료는 경기 포천시 관인광산에서 제공한 시료로 바나듐 품위는 0.54V2O5%이며, 자철석과 티탄철석이 대부분 차지하고 있는 것을 확인하였다. 단일자력선별 실험결과, 자력선별만으로는 바나듐 품위 1.10V2O5%대가 한계임을 확인하였다. 이를 해결하기 위하여 탄소(C)를 이용, 자철석 내에 존재하는 철을 환원시켜 철 내부에 존재하는 바나듐을 농축, 품위를 향상시키고자 하였다. 실험결과를 바탕으로 환원 전처리를 적용한 자력선별 공정을 개발하였으며 최종적으로 V2O5기준으로 품위 1.31%, 회수율 79.68%인 바나듐 정광을 회수할 수 있었다. 또한 환원 전과 후, 최종 바나듐 정광에 대한 XRD 분석을 실시하여 환원 전처리에 의한 바나듐의 거동을 확인하였다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 22-3212)' 과제의 일환으로 수행되었습니다.

References

  1. Lee, H. B., 2009 : Domestic vanadium stock adequacy, Mineral and Industry, 22(1), pp.60-70.
  2. Lmitaz, M., Rizwan, M.S., Xiong, S., et al., 2015 : Vanadium, recent advancements and research prospects: A review, Environment International, 80, pp.79-88. https://doi.org/10.1016/j.envint.2015.03.018
  3. Wang, M., Huang, S., Chen, B., et al., 2018 : A review of processing technologies for vanadium extraction from stone coal, Mineral processing and Extractive Metallurgy, 129(2), pp.1-9.
  4. Kim, S. M. and Jeon, H. S., 2019 : Separation Process for Self-Sufficient Recovery of Vanadium Resources in Korea, Journal of the Korean Society of Mineral and Energy Resources Engineers, 56(3), pp.292-302. https://doi.org/10.32390/ksmer.2019.56.3.292
  5. Moskalyk, R. R. and Alfantazi, A. M., 2003 : Processing of vanadium: A review, Minerals Engineering, 16(9), pp. 193-805. https://doi.org/10.1016/S0892-6875(03)00004-9
  6. USGS (U.S. Geological Survey), 2021 : Mineral Commodity Summaries 2021, Reston, Virginia, U.S.A..
  7. Lee, S. J., 2020 : A Review on Types of Vanadium Deposits and Process Mineralogical Characteristics, Journal of the Korean Society of Mineral and Energy Resources Engineers, 57(6), pp.640-651. https://doi.org/10.32390/ksmer.2020.57.6.640
  8. Wang, L., Sun, W., Liu, R., et al., 2014 : Flotation recovery of vanadium from low-grade stone coal, Transactions of Nonferrous Metal Society of China, 24, pp.1145-1151. https://doi.org/10.1016/S1003-6326(14)63173-3
  9. Guo, X., Dai, S., and Wang, Q., 2020 : Influence of different comminution flowsheets on the separation of vanadium titano-magnetite, Minerals Engineering, 149, pp.106268.
  10. Chen, S. Y. and Chu, M. S., 2014 : A new process for the recovery of iron, and titanium from vanadium titanomagnetite, The Journal of the Southern African Institute of Mining and Metallurgy, 114, pp.481-487.
  11. Go, B. H., Han, Y. S., Jeong, D. H., et al., 2021 : Development of Separation Technique for the Production of Vanadium from Domestic Vanadium Titanomagnetite Ore, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.2-9. https://doi.org/10.32390/ksmer.2021.58.1.002