DOI QR코드

DOI QR Code

Thermochemical Modeling Factors in Roasting Pre-treatment using a Rotary Kiln for Efficient Vanadium Recovery

바나듐의 고효율 회수를 위한 배소 전처리용 Rotary kiln 내 열화학적 모델인자

  • Lee, Sang-hun (Department of Environmental Science, Keimyung University) ;
  • Chung, Kyeong Woo (Mineral Resources Research Division, Korean Institute of Geoscience and Mineral Resoures (KIGAM))
  • 이상훈 (계명대학교 환경학부) ;
  • 정경우 (한국지질자원연구원 광물자원연구본부 자원회수연구센터)
  • Received : 2022.03.22
  • Accepted : 2022.04.13
  • Published : 2022.04.30

Abstract

In this study, analytical thermochemical modeling factors that contribute to maintaining a specific temperature range during vanadium roasting as a pretreatment using a rotary kiln are investigated. The model-related mechanisms include thermochemical reaction rates, heat balance, and heat transfer, through which the resultant temperature can be estimated intuitively. Ultimately, by optimizing these parameters, the ideal roasting temperature in the kiln is ≈1000 ℃ (or ≈1273 K) for long-term operation. Therefore, the heat generated from hydrocarbon (natural gas) fuel combustion and ore oxidation reactions, as well as the radiant heat transferred to ores, are assessed. In addition, thermochemical methods for relieving the temperature gradient in order to maintain the optimum temperature range of the rotary kiln are suggested.

본 연구에서는 Rotary kiln(RK)을 이용하여 바나듐 염배소 전처리시 적정온도를 유지하기 위한 열화학적 모델링 관련 인자에 대해 논의하였다. 관련 모델 메카니즘은 열화학 관련 반응속도모델, 열수지 및 열전달 등이며 이를 통해 rotary kiln내 온도분포를 직관적으로 추정할 수 있다. 이러한 작업을 통해 최적 염배소 온도인 1000 ℃(또는 약 1273 K) 근방을 kiln내에서 장기간 유지하는 것이 관건이다. 본 연구에서는 탄화수소(천연가스) 연료연소 및 광석 산화반응으로부터의 발열과 광석으로의 복사열전달 등을 산정하였다. 또한 열화학 측면에서 Rotary kiln내 적정 배소온도구역에서의 온도구배 완화를 위한 방안을 제시하였다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 21-3212-1)' 과제의 일환으로 수행되었습니다.

References

  1. Lmtiaz, M., Rizwan, M.S., Xiong, S., et al., 2015 : Vanadium, recent advancements and research prospects: A review, Environment International, 80, pp.79-88. https://doi.org/10.1016/j.envint.2015.03.018
  2. Wang, M., Huang, S., Chen, B., et al., 2018 : A review of processing technologies for vanadium extraction from stone coal, Mineral Processing and Extractive Metallurgy, pp.1-9.
  3. KORES, 2020 : Vanadium overview, KORES annual report.
  4. Liu, C., Zhang, Y., Bal, S., 2017 : Vanadium recovery from stone coal through roasting and flotation, Transactions of Nonferrous Metals Society of China, 27, pp.197-203. https://doi.org/10.1016/S1003-6326(17)60022-0
  5. Tang, J., Zhang, Y., Bao, S., et al., 2016 : Pre-concentration of vanadium- bearing mica from stone coal by roasting-flotation, Physicochemical Problems of Mineral Processing, 53, pp.402-412.
  6. Lee, S-H. and Chung, K.W., 2021 : Feasibility of rotary kiln application for roasting of vanadium in domestic titanium-magnetite ore, Journal of the Korean Society of Mineral and Energy Resource Engineers, 58, pp.30-36. https://doi.org/10.32390/ksmer.2021.58.1.030
  7. Nam, C., 2020 : KIGAM workshop report 2020, p.42-p.51.
  8. Zhang, C., Sun, C., Li, H., et al., 2020 : Blank roasting kinetics of illite type vanadium bearing stone coal, Journal of Materials Research and Technology. 9, pp.7363-7369. https://doi.org/10.1016/j.jmrt.2020.05.010
  9. Zheng, H., Schenk, J., Spreitzer, D., et al., 2021 : Review on the Oxidation Behaviors and Kinetics of Magnetite in Particle Scale, Steel Research International, 92, pp.1-13.
  10. Mujumdar, K.S., Ranade, V.V., 2006 : Simulation of rotary cement kilns using a one-dimensional model, Chemical Engineering Research and Design, 84(A3), pp.165-177 https://doi.org/10.1205/cherd.04193
  11. Boateng, A.A., 2008 : Rotary Kilns - Transport Phenomena and Transport Processes, Elsevier Inc., United Kingdom.
  12. Gaurav, G.K., Khanam, S., 2016 : Analysis of temperature profile and % metallization in rotary kiln of sponge iron process through CFD, Journal of the Taiwan Institute of Chemical Engineers, 63, pp.473-481. https://doi.org/10.1016/j.jtice.2016.02.035
  13. Runkana, V., Kumar, Natekar, P.V., et al., 2010 : Mathematical modelling of sponge iron production in a rotary kiln, Steel Tech, 5, pp.9-17.
  14. Cho, H.J., Pistorius, P.C., 2011 : The effects of concentrate source and particle size on oxidation behavior of magnetite, Presented at AISTech Conference Proceedings, Indianpolis, USA.
  15. Monsen, B.E., 1992 : Influence of Green Pellet Properties on Pelletizing of Magnetite Iron Ore, PhD Thesis, University of Trondheim.
  16. Martins, M.A., Oliveira, L.S., Franca, A.S., 2001 : Modeling and simulation of petroleum coke calcination in rotary kilns, Elsevier Inc., 80, pp.1611-1622.
  17. Choi, D, Choi, S., 2017 : Rotary Kiln Flame and Heat Transfer Model - Analysis of Thermal Performance according to Fuel, Journal of Korean Society of Combustion, 22(4), pp.9-18.