• Title/Summary/Keyword: 바나듐 레독스 흐름 전지

Search Result 55, Processing Time 0.035 seconds

Analysis on capacity loss caused by air oxidation of $V^{2+}$ ion using UV-Visible spectrophotometer for vanadium redox flow battery (공기 중 바나듐 2가 이온 산화에 의한 바나듐 레독스 흐름전지의 내구성 영향 분석)

  • Kwon, Soonkwan;Kim, Hansung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.175.2-175.2
    • /
    • 2011
  • 바나듐 3, 4, 5가 이온은 공기 중에서 안정하지만, 바나듐 2가 이온은 쉽게 산화된다. 그러므로 바나듐 2가 이온이 담겨져 있는 음극 탱크가 공기와 접촉하지 않게 하는 것이 중요하다. 충전 중 음극 탱크에 공기가 침투되면, 바나듐 2가 이온은 3가 이온으로 산화되기 때문에 음극과 양극의 전해질에 불균형을 초래한다. 이러한 불균형은 바나듐 레독스 흐름전지 용량저하의 원인이 된다. 본 연구에서는 공기 중 2가 이온 산화에 의한 전해질의 불균형 현상을 쉽게 보여주기 위해, 공기노출과 차단조건에서 충방전 중에 발생한 음극과 양극의 바나듐 이온 상태변화량을 UV-Visible spectrophotometer를 이용해 정량적으로 분석하였다. 분석 결과, 공기노출 조건에서 음극의 충전 시, 충방전 cycle이 진행 될수록 바나듐 2가 이온의 양이 현격히 줄어들었지만, 공기차단 조건에서는 2가 이온의 양이 공기노출 조건보다 훨씬 더 적게 줄어들었다. 즉, 공기차단 조건에서는 바나듐 2가 이온이 3가로 산화되지 않아서 음극의 충전 후 바나듐 3가에서 2가로 전환되는 양이 공기노출 조건보다 더 많은 것을 확인할 수 있었다. 이러한 영향으로 인해, 충방전 10th cycle을 진행해 본 결과, 공기차단 조건에서는 충방전 용량감소가 거의 없었지만 공기노출 조건에서는 현격한 충방전 용량 감소를 보였다.

  • PDF

Study on a Separator for the All-vanadium Redox Flow Battery (바나듐 레독스-흐름 전지용 격막에 관한 연구)

  • Lee, Sang-Ho;Kim, Joeng-Geun;Choi, Sang-Il;Hwang, Gab-Jin;Jin, Chang-Soo
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.129-135
    • /
    • 2009
  • The cation exchange membrane using the block co-polymer of polysulfone and polyphenylenesulfidesulfone was prepared for a separator of all-vanadium redox flow battery. The membrane property of the prepared cation exchange membrane was measured. The thermal stability of the prepared cation exchange analyzed by TG showed a more stable than that of Nafion117. The lowest measured membrane resistance, equilibrated in 1mol/L $H_2SO_4$ aqueous solution, $0.96{\cdot}cm^2$ at 3 cc of CSA (chlorosulfuricacid) which was introduction agent of ion exchange group. Electrochemical property of all-vanadium redox flow battery using the prepared cation exchange membrane was measured. Electromotive force in 100% of state of charge was 1.4 V which was that of all-vanadium redox flow battery, and cell resistance in charge and discharge at each state of charge had a low value compared with that of all-vanadium redox flow battery using Nafion117.

All-vanadium redox-flow battery for the power storage (전력저장용 전 바나듐계 레독스-흐름 2차전지에 관한 연구)

  • 황갑진;김종원;심규성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • 레독스-흐름 2차 전지는 레독스 쌍이 녹아있는 수용액을 탱크에 저장한 다음 펌프로 유통형 전해 셀에 공급해 충방전하는 2차 전지의 한 종류이며, 종래의 2차 전지와는 다른 재생형 연료전지 중의 하나이다[1]. 이러한 전지의 원리는 19세기말부터 알려져 있었지만, 중량과 용적이 컸기 때문에 소형화, 경량화가 중시되는 2차 전지로서는 부적당하였고, 수용액을 사용하기 때문에 기전력이 낮다는 결점이 있었다.(중략)

  • PDF

Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성)

  • Baek, Young-Min;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.586-592
    • /
    • 2011
  • In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate (VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, $^1H$ NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.

The Study on the Separation Characteristics of ion with ion Exchange Membrane - I.The Characteristics of ion Exchange Membrane with the Separator of All-Vanadium Redox Flow Battery - (이온교환막을 이용한 이온의 분리특성에 관한 연구 - I. 전바나듐계 레독스-흐름 전지의 격막용 이온 교환막의 특성 -)

  • Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.393-402
    • /
    • 1993
  • Redox flow secondary battery have been studied actively as one of the most promising electrochemical energy storage devices for a wide range of applications, such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants. In all-vanadium redox flow battery using solution of vanadium-sulfuric acid as a active material, the difficulty in developing an efficient ion selective membrane can still be identified. The asymmetric cation exchange membrane(M-30) as a separator of all-vanadium redox flow battery which were obtained by the reaction of chlorosulfonation for 30 minutes under the irradiation of UV, showed its superiority in the transport number of 0.94 and electrical resistivity of $0.5{\Omega}{\cdot}cm^2$. The base membrane were prepared by lamination a low density polyethlene film of $10{\mu}m$ thickness on polyolefin membrane(HIPORE 120). The electrical resistivity of M-30 membrane in real solution of vanadium-sulfuric acid was $3.79{\Omega}{\cdot}cm^2$ and it was similar to that of Nafion 117 membrane. Also the cell resistivity was $6.6{\Omega}{\cdot}cm^2$and lower than that of Nafion 117. In considertion of electrochemical properties and costs of membranes, M-30 membrane was better than that of Nafion 117 and CMV of Asahi glass Co. as a separator of all-vanadium redox flow battery.

  • PDF

The Characteristics and Stability of Ion Exchange Membrane in All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 2차전지에서 이온교환막의 특성 및 안정성)

  • 신석재;강안수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.63-64
    • /
    • 1993
  • 레독스-흐름 2차전지는 발전소의 잉여전력, 태양전지 및 전기자동차 등 응용 분야가 넓은 유망한 에너지 저장 방법의 하나이다[1,2]. Fe-Cr계 2차전지와 비교하여 수소 가스의 발생이 없고 양쪽 액의 확산에의한 혼합으로 전지의 용량이 떨어지지 않고 rebalance의 필요가 없는 등 많은 장점을 가지고 있으며 조작이 간단하며 기전력 (1,4 V)과 에너지 밀도가 높기 때문에 compact화가 가능하다[1].

  • PDF

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part I. All Vanadium Redox Flow Battery (가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part I. 전 바나듐 레독스 흐름전지)

  • Lee, Ji-Eun;Park, Ye-Rin;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • In this study, we have developed pore-filled ion-exchange membranes (PFIEMs) filled with ionomer in a thin polyethylene porous film (thickness = $25{\mu}m$) and investigated the charge-discharge characteristics of the all vanadium redox flow battery (VRFB) employing them. Especially, the degree of crosslinking and free volume of the PFIEMs were appropriately controlled to produce ion-exchange membranes exhibiting both the low membrane resistance and low vanadium permeability by mixing crosslinking agents having different molecular size. As a result, the prepared PFIEMs exhibited excellent electrochemical properties which are comparable to those of the commercial membranes. Also, it was confirmed through the experiments of vanadium ion permeability and VRFB performance evaluation that the PFIEMs showed low vanadium ion permeability and high charge-discharge efficiency in comparison with the commercial membrane despite their thin film thickness.

Performance of Carbon Cathode and Anode Electrodes Functionalized by N and O Doping Treatments for Charge-discharge of Vanadium Redox Flow Battery (탄소전극의 질소 및 산소 도핑에 따른 바나듐 레독스-흐름전지 양극 및 음극에서의 촉매화학적 특성 연구)

  • Lim, Hyebin;Kim, Jiyeon;Yi, Jung S.;Lee, Doohwan
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.308-313
    • /
    • 2017
  • In this study, we investigated the electrocatalytic effects of the N and O co-doping of Graphite Felt (GF) electrode for the vanadium redox flow battery (VRFB) at the cathode and the anode reaction, respectively. The electrodes were prepared by chemical vapor deposition (CVD) with $NH_3-O_2$ at 773 K, and its effects were compared with an electrode prepared by an O doping treatment. The surface morphology and chemical composition of the electrodes were characterized by scanning electron microscopy (SEM) and photoelectron spectroscopy (XPS). The electrocatalytic properties of these electrodes were characterized in a VRFB single cell comparing the efficiencies and performance of the electrodes at the cathode, anode, and single cell level. The results exhibited about 2% higher voltage and energy efficiencies on the N-O-GF than the O-GF electrode. It was found that the N and O co-doping was particularly effective in the enhancement of the reduction-oxidation reaction at the anode.

Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 Poly(arylene ether sulfone) 막의 특성)

  • Oh, Sung-June;Jeong, Jae-Hyeon;Shin, Yong-Cheol;Lee, Moo-Seok;Lee, Dong-Hoon;Chu, Cheun-Ho;Kim, Young-Sook;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.671-676
    • /
    • 2013
  • Recently, there are many efforts focused on development of Redox Flow Battery (RFB) for large energy storage system. Economical hydrocarbon membranes alternative to fluorinated membranes for RFB membrane are receiving attention. In this study, characteristics of poly(arylene ether sulfone) (PAES) were compared with expensive fluorinated membrane at VRB (Vanadium Redox Flow Battery) operation condition. Permeability of vanadium ion through membrane, ion exchange capacity (IEC), change of OCV, swelling, charge-discharge curves and energy efficiency were measured. PAES membrane showed lower permeability of vanadium ion, higher IEC and then higher energy efficiency compared with Nafion 117 membranes.

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery (비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석)

  • Sung, Ki-Won;Shin, Sung-Hee;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.615-621
    • /
    • 2013
  • Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.