• Title/Summary/Keyword: MSPAC

Search Result 2, Processing Time 0.016 seconds

Characterization of S-velocity Structure Near Izmit City of Turkey Using Ambient Noise and MASW (표면파를 이용한 터키 이즈밋 근교 부지의 S파 속도 구조 규명)

  • Cho, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.230-241
    • /
    • 2008
  • Characteristics of transfer responses for arrays like triangle, hexagon and semicircle were investigated. To characterize the site near Izmit city with ambient noise measurement, dispersion curves of surface waves were derived with using array technique like F-K, High resolution F-K, MSPAC and H/V ratio was calculated. Also, MASW was surveyed to get the high frequency part of dispersion curves. The transition from fundamental mode to first high mode of surface waves for dispersion curve was observed. Dispersion curve of fundamental mode of ambient noise and first higher mode of MASW was used in inversion to get S-wave velocity structure of subsurface. None-unique problem of results of surface wave inversion was solved with comparison of result of refraction tomography performed with first arrivals of MASW data.

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).