• Title/Summary/Keyword: human diseases

Search Result 3,128, Processing Time 0.034 seconds

Pre-Natal Epigenetic Influences on Acute and Chronic Diseases Later in Life, such as Cancer: Global Health Crises Resulting from a Collision of Biological and Cultural Evolution

  • Trosko, James E.
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.394-407
    • /
    • 2011
  • Better understanding of the complex factors leading to human diseases will be necessary for both long term prevention and for managing short and long-term health problems. The underlying causes, leading to a global health crisis in both acute and chronic diseases, include finite global health care resources for sustained healthy human survival, the population explosion, increased environmental pollution, decreased clean air, water, food distribution, diminishing opportunities for human self-esteem, increased median life span, and the interconnection of infectious and chronic diseases. The transition of our pre-human nutritional requirements for survival to our current culturally-shaped diet has created a biologically-mismatched human dietary experience. While individual genetic, gender, and developmental stage factors contribute to human diseases, various environmental and culturally-determined factors are now contributing to both acute and chronic diseases. The transition from the hunter-gatherer to an agricultural-dependent human being has brought about a global crisis in human health. Initially, early humans ate seasonally-dependent and calorically-restricted foods, during the day, in a "feast or famine" manner. Today, modern humans eat diets of caloric abundance, at all times of the day, with foods of all seasons and from all parts of the world, that have been processed and which have been contaminated by all kinds of factors. No longer can one view, as distinct, infectious agent-related human acute diseases from chronic diseases. Moreover, while dietary and environmental chemicals could, in principle, cause disease pathogenesis by mutagenic and cytotoxic mechanisms, the primary cause is via "epigenetic", or altered gene expression, modifications in the three types of cells (e.g., adult stem; progenitor and terminally-differentiated cells of each organ) during all stages of human development. Even more significantly, alteration in the quantity of adult stem cells during early development by epigenetic chemicals could either increase or decrease the risk to various stem cell-based diseases, such as cancer, later in life. A new concept, the Barker hypothesis, has emerged that indicates pre-natal maternal dietary exposures can now affect diseases later in life. Examples from the studies of the atomic bomb survivors should illustrate this insight.

Expression and localization of the spermatogenesis-related gene, Znf230, in mouse testis and spermatozoa during postnatal development

  • Song, Hongxia;Su, Dan;Lu, Pan;Yang, Jiyun;Zhang, Wei;Yang, Yuan;Liu, Yunqiang;Zhang, Sizhong
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.664-669
    • /
    • 2008
  • Znf230, the mouse homologue of the human spermatogenesis-related gene, ZNF230, has been cloned by rapid amplification of cDNA ends (RACE). This gene is expressed predominantly in testis, but its expression in different testicular cells and spermatogenic stages has not been previously analyzed in detail. In the present study, the cellular localization of the Znf230 protein in mouse testis and epididymal spermatozoa was determined by RT-PCR, immunoblotting, immunohistochemistry and immunofluorescence. It is primarily expressed in the nuclei of spermatogonia and subsequently in the acrosome system and the entire tail of developing spermatids and spermatozoa. The results indicate that Znf230 may play an important role in mouse spermatogenesis, including spermatogenic cell proliferation and sperm maturation, as well as motility and fertilization.

Oral and Human Microbiome Research

  • Chung, Sung-Kyun
    • Journal of dental hygiene science
    • /
    • v.19 no.2
    • /
    • pp.77-85
    • /
    • 2019
  • In the past gut microbiome has been the main focus of microbiome research. Studies about the microbiome inside oral cavities and other organs are underway. Studies about the relationship between noninfectious diseases and periodontal diseases, and the negative effects of harmful oral microbes on systemic health have been published in the recent past. A lot of attention is being paid towards fostering a healthy oral microbial ecosystem. This study aimed to understand the roles and effects of the microbiome inside the human body can potentially help cure various diseases including inflammatory bowel diseases with no known cure such as Crohn's disease, atopic dermatitis, obesity, cancer, diabetes, brain diseases and oral diseases. The present study examined technological trends in the correlation between the human microbiome and diseases in the human body, interactions between the human body's immunity, the metabolic system, and the microbiome, and research trends in other countries. While it has been proven that human microbiome is closely correlated with human diseases, most studies are still in the early stage of trying to compare the composition of microbiomes between health and patient groups. Since the oral environment is a dynamic environment that changes due to not only food intake but also other external factors such as lifestyle, hygiene, and drug intake, it is necessary to continue in-depth research on the microbiome composition characteristics to understand the complex functions of oral microorganisms. Analyzing the oral microbiome using computational technology may aid in disease diagnosis and prevention.

Emerging role of mitophagy in human diseases and physiology

  • Um, Jee-Hyun;Yun, Jeanho
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.299-307
    • /
    • 2017
  • Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using autophagic machinery. Mitophagy plays an essential role in maintaining mitochondrial quality control and homeostasis. Mitochondrial dysfunctions and defective mitophagy in neurodegenerative diseases, cancer, and metabolic diseases indicate a close link between human disease and mitophagy. Furthermore, recent studies showing the involvement of mitophagy in differentiation and development, suggest that mitophagy may play a more active role in controlling cellular functions. A better understanding of mitophagy will provide insights about human disease and offer novel chance for treatment. This review mainly focuses on the recent implications for mitophagy in human diseases and normal physiology.

Cloning and Expression Analysis of a Novel Mouse Zinc Finger Protein Gene Znf313 Abundantly Expressed in Testis

  • Li, Na;Sun, Huaqin;Wu, Qiaqing;Tao, Dachang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.270-276
    • /
    • 2007
  • We have cloned a novel mouse zinc finger protein gene Znf313 by rapid amplification of cDNA ends (RACE) according to the homologue of human ZNF313 gene. The cDNA is 2,163 base pairs (bp) in length and encodes a 229 amino acids (aa) protein with a $C_3HC_4$ ring finger domain and three $C_2H_2$ domains. 89% and 93% nucleotide (nt) and aa sequence identity is observed with its human homologue. Revealed by Northern blot and RT-PCR, full mRNA consists of 2.16 kb and widely expresses in tissues as a single transcript, most abundantly in heart, liver, kidney and testis. The expression of Znf313 in testis is detected in all development stages. Western blot analysis also reveals that Znf313 is expressed in the tissues. Immunohistochemical staining and subcellular localization demonstrate that Znf313 is expressed both in the cytoplasm and nucleus whereas predominantly localized in the nucleus. Present data suggests that Znf313 gene might play a fundamental role in gene transcription and regulation in organism and relates to spermatogenesis.

Improving Pneumovirus Isolation Using a Centrifugation and AZD1480 Combined Method

  • Lee, Hansaem;Woo, Hye-Min;Kim, Kisoon;Park, Sehee;Park, Man-Seong;Kim, Sung Soon;Kim, You-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.2006-2013
    • /
    • 2019
  • The isolation of respiratory viruses, especially from clinical specimens, often shows poor efficiency with classical cell culture methods. The lack of suitable methods to generate virus particles inhibits the development of diagnostic assays, treatments, and vaccines. We compared three inoculation methods, classical cell culture, the addition of a JAK2 inhibitor AZD1480, and centrifugation-enhanced inoculation (CEI), to replicate human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV). In addition, a combined method using AZD1480 treatment and CEI was used on throat swabs to verify that this method could increase virus isolation efficiency from human clinical specimens. Both CEI and AZD1480 treatment increased HRSV and HMPV genome replication. Also, the combined method using CEI and AZD1480 treatment enhanced virus proliferation synergistically. The combined method is particularly suited for the isolation of interferon-sensitive or slowly growing viruses from human clinical specimens.

TSG101 Physically Interacts with Linear Ubiquitin Chain Assembly Complex (LUBAC) and Upregulates the TNFα-Induced NF-κB Activation

  • Eunju Kim;Hyunchu Cho;Gaeul Lee;Heawon Baek;In Young Lee;Eui-Ju Choi
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.430-440
    • /
    • 2023
  • Linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin E3 ligase complex composed of HOIP, HOIL-1L, and SHARPIN that catalyzes the formation of linear/M1-linked ubiquitin chain. It has been shown to play a pivotal role in the nuclear factor (NF)-κB signaling induced by proinflammatory stimuli. Here, we found that tumor susceptibility gene (TSG101) physically interacts with HOIP, a catalytic component of LUBAC, and potentiates LUBAC activity. Depletion of TSG101 expression by RNA interference decreased TNFα-induced linear ubiquitination and the formation of TNFα receptor 1 signaling complex (TNF-RSC). Furthermore, TSG101 facilitated the TNFα-induced stimulation of the NF-κB pathway. Thus, we suggest that TSG101 functions as a positive modulator of HOIP that mediates TNFα-induced NF-κB signaling pathway.

Modeling of Human Genetic Diseases Via Cellular, Reprogramming

  • Kang, Min-Yong;Suh, Ji-Hoon;Han, Yong-Mahn
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.67-72
    • /
    • 2012
  • The generation of induced pluripotent stem cells (iPSCs) derived from patients' somatic cells provides a new paradigm for studying human genetic diseases. Human iPSCs which have similar properties of human embryonic stem cells (hESCs) provide a powerful platform to recapitulate the disease-specific cell types by using various differentiation techniques. This promising technology has being realized the possibility to explore pathophysiology of many human genetic diseases at the molecular and cellular levels. Furthermore, disease-specific human iPSCs can also be used for patient-based drug screening and new drug discovery at the stage of the pre-clinical test in vitro. In this review, we summarized the concept and history of cellular reprogramming or iPSC generation and highlight recent progresses for disease modeling using patient-specific iPSCs.

Towards the Application of Human Defensins as Antivirals

  • Park, Mee Sook;Kim, Jin Il;Lee, Ilseob;Park, Sehee;Bae, Joon-Yong;Park, Man-Seong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.242-254
    • /
    • 2018
  • Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express ${\alpha}$- and ${\beta}$-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the 'defensin vaccine' concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.

Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

  • Wang, Yuli;Ma, Junchi;Du, Yifei;Miao, Jing;Chen, Ning
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.186-194
    • /
    • 2016
  • Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs significantly promoted the proliferation and osteoblastic differentiation of $H_2O_2$-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.