DOI QR코드

DOI QR Code

Selective adsorption of Ba2+ using chemically modified alginate beads with enhanced Ba2+ affinity and its application to 131Cs production

  • Kim, Jin-Hee (Radioisotope Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Seung-Kon (Radioisotope Research Division, Korea Atomic Energy Research Institute)
  • Received : 2021.08.21
  • Accepted : 2022.03.07
  • Published : 2022.08.25

Abstract

The 131Cs radioisotope with a short half-life time and high average radiation energy can treat the cancer effectively in prostate brachytherapy. The typical 131Cs production processes have a separation step of the cesium from 131Ba to obtain a high specific radioactivity. Herein, we suggested a novel 131Cs separation method based on the Ba2+ adsorption of alginate beads. It is necessary to reduce the affinity of alginate beads to cesium ions for a high production yield. The carboxyl group of the alginate beads was replaced by a sulfonate group to reduce the cesium affinity while reinforcing their affinity to barium ions. The modified beads exhibited superior Ba2+ adsorption performances to native beads. In the fixed-bed column tests, the saturation time and adsorption capacity could be estimated with the Yoon-Nelson model in various injection flow rates and initial concentrations. In terms of the Cs elution, the modified alginate showed better performance (i.e., an elution over 88%) than the native alginate (i.e., an elution below 10%), indicating that the functional group modification was effective in reducing the affinity to cesium ions. Therefore, the separation of cesium from the barium using the modified alginate is expected to be an additional option to produce 131Cs.

Keywords

Acknowledgement

This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2017M2A2A6A05016598).

References

  1. R. Yang, J. Wang, H. Zhang, Dosimetric study of Cs-131, I-125, and Pd-103 seeds for permanent prostate brachytherapy, Cancer Biother. Rad. 24 (6) (2009) 701-705. https://doi.org/10.1089/cbr.2009.0648
  2. M.K. Murphy, R.K. Piper, L.R. Greenwood, M.G. Mitch, P.J. Lamperti, S.M. Seltzer, et al., Evaluation of the new cesium-131 seed for use in low-energy x-ray brachytherapy, Med. Phys. 31 (6) (2004) 1529-1538. https://doi.org/10.1118/1.1755182
  3. S. Katcoff, New barium and cesium isotopes: 12.0 d Ba131, 10.2 d Cs131, and long-lived Ba133*, Phys. Rev. 72 (12) (1947) 1160. https://doi.org/10.1103/PhysRev.72.1160
  4. M.R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J. 242 (2014) 127-135. https://doi.org/10.1016/j.cej.2013.12.072
  5. M. Chavez, L. De Pablo, T. Garcia, Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay, J. Hazard Mater. 175 (1-3) (2010) 216-223. https://doi.org/10.1016/j.jhazmat.2009.09.151
  6. J. Wu, B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao, N. Liu, Behavior and analysis of cesium adsorption on montmorillonite mineral, J. Environ. Radioact. 100 (10) (2009) 914-920. https://doi.org/10.1016/j.jenvrad.2009.06.024
  7. P. Rajec, K. Domianova, Cesium exchange reaction on natural and modified clinoptilolite zeolites, J. Radioanal. Nucl. Chem. 275 (3) (2008) 503-508. https://doi.org/10.1007/s10967-007-7105-3
  8. R. Cortes-Martinez, M. Olguin, M. Solache-Rios, Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems, Desalination 258 (1-3) (2010) 164-170. https://doi.org/10.1016/j.desal.2010.03.019
  9. H.A. Alamudy, K. Cho, Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid, Chem. Eng. J. 349 (2018) 595-602. https://doi.org/10.1016/j.cej.2018.05.137
  10. D.J. Yang, Z.F. Zheng, H.Y. Zhu, H.W. Liu, X.P. Gao, Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water, Adv. Mater. 20 (14) (2008) 2777-2781. https://doi.org/10.1002/adma.200702055
  11. M. Xu, G. Wei, N. Liu, L. Zhou, C. Fu, M. Chubik, W. Han, Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater, Nanoscale 6 (2) (2014) 722-725. https://doi.org/10.1039/C3NR03467D
  12. W.R. Gombotz, S. Wee, Protein release from alginate matrices, Adv. Drug Deliv. Rev. 31 (3) (1998) 267-285. https://doi.org/10.1016/S0169-409X(97)00124-5
  13. K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog. Polym. Sci. 37 (1) (2012) 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
  14. Y. Fei, Y. Li, S. Han, J. Ma, Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution, J. Colloid Interface Sci. 484 (2016) 196-204. https://doi.org/10.1016/j.jcis.2016.08.068
  15. G.T. Grant, E.R. Morris, D.A. Rees, P.J. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS (Fed. Eur. Biochem. Soc.) Lett. 32 (1) (1973) 195-198. https://doi.org/10.1016/0014-5793(73)80770-7
  16. A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials, Macromol. Biosci. 6 (8) (2006) 623-633. https://doi.org/10.1002/mabi.200600069
  17. I.P.S. Fernando, W. Lee, E.J. Han, G. Ahn, Alginate-based nanomaterials: fabrication techniques, properties, and applications, Chem. Eng. J. (2019) 123823.
  18. W.S. Tan, A.S.Y. Ting, Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu (II) removal from aqueous solution, Bioresour. Technol. 160 (2014) 115-118. https://doi.org/10.1016/j.biortech.2013.12.056
  19. Y. Huang, H. Wu, T. Shao, X. Zhao, H. Peng, Y. Gong, H. Wan, Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: mechanism and application in simulated electroplating wastewater, Chem. Eng. J. 339 (2018) 322-333. https://doi.org/10.1016/j.cej.2018.01.071
  20. S. Wang, T. Vincent, C. Faur, E. Guibal, Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads, Bioresour. Technol. 231 (2017) 26-35. https://doi.org/10.1016/j.biortech.2017.01.066
  21. M. Dai, Y. Liu, B. Ju, Y. Tian, Preparation of thermoresponsive alginate/starch ether composite hydrogel and its application to the removal of Cu (II) from aqueous solution, Bioresour. Technol. 294 (2019) 122192. https://doi.org/10.1016/j.biortech.2019.122192
  22. F. Wang, X. Lu, X. Li, Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery, J. Hazard Mater. 308 (2016) 75-83. https://doi.org/10.1016/j.jhazmat.2016.01.021
  23. H. Hong, B. Kim, J. Hong, J. Ryu, T. Ryu, K. Chung, I. Park, Enhanced Sr adsorption performance of MnO2-alginate beads in seawater and evaluation of its mechanism, Chem. Eng. J. 319 (2017) 163-169. https://doi.org/10.1016/j.cej.2017.02.132
  24. A. Mandla, S. Lahiri, Separation of 134Cs and 133Ba radionuclides by calcium alginate beads, J. Radioanal. Nucl. Chem. 290 (1) (2011) 115-118. https://doi.org/10.1007/s10967-011-1158-z
  25. T.A. Davis, B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae, Water Res. 37 (18) (2003) 4311-4330. https://doi.org/10.1016/S0043-1354(03)00293-8
  26. Z. Hubicki, D. Kolodynska, Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods, Ion Exchange Technologies, 2012, pp. 193-240.
  27. J. Roosen, S. Mullens, K. Binnemans, Multifunctional alginate-sulfonate-silica sphere-shaped adsorbent particles for the recovery of indium (III) from secondary resources, Ind. Eng. Chem. Res. 56 (30) (2017) 8677-8688. https://doi.org/10.1021/acs.iecr.7b01101
  28. H. Patel, Fixed-bed column adsorption study: a comprehensive review, Appl. Water Sci. 9 (3) (2019) 45. https://doi.org/10.1007/s13201-019-0927-7
  29. G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul, P. Fredericks, L. Grondahl, Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS, Biomacromolecules 8 (8) (2007) 2533-2541. https://doi.org/10.1021/bm070014y
  30. R. Pereira, A. Tojeira, D.C. Vaz, A. Mendes, P. Bartolo, Preparation and characterization of films based on alginate and aloe vera, Int. J. Polym. Anal. Char. 16 (7) (2011) 449-464. https://doi.org/10.1080/1023666X.2011.599923
  31. H. Bhandari, R. Srivastav, V. Choudhary, S. Dhawan, Enhancement of corrosion protection efficiency of iron by poly (aniline-co-amino-naphthol-sulphonic acid) nanowires coating in highly acidic medium, Thin Solid Films 519 (3) (2010) 1031-1039. https://doi.org/10.1016/j.tsf.2010.08.038
  32. M. Srimathi, R. Rajalakshmi, S. Subhashini, Polyvinyl alcohol-sulphanilic acid water soluble composite as corrosion inhibitor for mild steel in hydrochloric acid medium, Arab. J. Chem. 7 (5) (2014) 647-656. https://doi.org/10.1016/j.arabjc.2010.11.013
  33. X. Ouyang, X. Jiang, X. Qiu, D. Yang, Y. Pang, Effect of molecular weight of sulfanilic acid-phenol-formaldehyde condensate on the properties of cementitious system, Cement Concr. Res. 39 (4) (2009) 283-288. https://doi.org/10.1016/j.cemconres.2009.01.002
  34. Y. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (5) (1999) 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  35. H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang, Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II), J. Colloid Interface Sci. 316 (2) (2007) 277-283. https://doi.org/10.1016/j.jcis.2007.07.075
  36. D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem. 3 (1) (2013) 55. https://doi.org/10.1186/2193-8865-3-55
  37. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361-1403. https://doi.org/10.1021/ja02242a004
  38. Y. Peng, H. Huang, D. Liu, C. Zhong, Radioactive barium ion trap based on metal-organic framework for efficient and irreversible removal of barium from nuclear wastewater, ACS Appl. Mater. Interfaces 8 (13) (2016) 8527-8535. https://doi.org/10.1021/acsami.6b00900
  39. Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem. 39 (5) (2004) 599-613. https://doi.org/10.1016/S0032-9592(03)00132-8
  40. M. Jain, V. Garg, K. Kadirvelu, Cadmium (II) sorption and desorption in a fixed bed column using sunflower waste carbon calcium-alginate beads, Bioresour. Technol. 129 (2013) 242-248. https://doi.org/10.1016/j.biortech.2012.11.036
  41. A.P. Lim, A.Z. Aris, Continuous fixed-bed column study and adsorption modeling: removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons, Biochem. Eng. J. 87 (2014) 50-61. https://doi.org/10.1016/j.bej.2014.03.019
  42. S.R. Pilli, V.V. Goud, K. Mohanty, Biosorption of Cr (VI) on immobilized hydrilla verticillata in a continuous up-flow packed bed: prediction of kinetic parameters and breakthrough curves, Desalination Water Treat. 50 (1-3) (2012) 115-124. https://doi.org/10.1080/19443994.2012.708555
  43. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J. 45 (8) (1984) 509-516. https://doi.org/10.1080/15298668491400197
  44. K. Jung, T. Jeong, J. Choi, K. Ahn, S. Lee, Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance, Bioresour. Technol. 244 (2017) 23-32. https://doi.org/10.1016/j.biortech.2017.07.133
  45. J. Salman, V. Njoku, B. Hameed, Batch and fixed-bed adsorption of 2, 4-dichlorophenoxyacetic acid onto oil palm frond activated carbon, Chem. Eng. J. 174 (1) (2011) 33-40. https://doi.org/10.1016/j.cej.2011.08.024