Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Grant No. 2018R1A2B2005343 and No. 2017M3A9E2060428).
References
- D. Yan, F. Vicini, J. Wong, A. Martinez, Adaptive radiation therapy, Phys. Med. Biol. 42 (1997) 123. https://doi.org/10.1088/0031-9155/42/1/008
- J.-J. Sonke, M. Aznar, C. Rasch, Adaptive radiotherapy for anatomical changes, in: Book Adaptive Radiotherapy for Anatomical Changes, Elsevier, 2019, pp. 245-257.
- K.K. Brock, Adaptive radiotherapy: moving into the future, in: Book Adaptive Radiotherapy: Moving into the Future, NIH Public Access, 2019, p. 181.
- A. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions, Phys. Med. Biol. 53 (2008) 1043. https://doi.org/10.1088/0031-9155/53/4/015
- A. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties, Phys. Med. Biol. 53 (2008) 1027. https://doi.org/10.1088/0031-9155/53/4/014
- H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Phys. Med. Biol. 57 (2012) R99. https://doi.org/10.1088/0031-9155/57/11/R99
- B. Cai, O.L. Green, R. Kashani, V.L. Rodriguez, S. Mutic, D. Yang, A practical implementation of physics quality assurance for photon adaptive radiotherapy, Z. Med. Phys. 28 (2018) 211-223. https://doi.org/10.1016/j.zemedi.2018.02.002
- O.L. Green, L.E. Henke, G.D. Hugo, Practical clinical workflows for online and offline adaptive radiation therapy, in: Book Practical Clinical Workflows for Online and Offline Adaptive Radiation Therapy, Elsevier, 2019, pp. 219-227.
- C.K. Glide-Hurst, P. Lee, A.D. Yock, J.R. Olsen, M. Cao, F. Siddiqui, W. Parker, A. Doemer, Y. Rong, A.U. Kishan, Adaptive radiation therapy (art) strategies and technical considerations: a state of the art review from nrg oncology, Int. J. Radiat. Oncol. Biol. Phys. 109 (2021) 1054-1075. https://doi.org/10.1016/j.ijrobp.2020.10.021
- D. Yan, D. Lockman, D. Brabbins, L. Tyburski, A. Martinez, An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer, Int. J. Radiat. Oncol. Biol. Phys. 48 (2000) 289-302.
- D. Yan, J. Liang, Expected treatment dose construction and adaptive inverse planning optimization: implementation for offline head and neck cancer adaptive radiotherapy, Med. Phys. 40 (2013), 021719. https://doi.org/10.1118/1.4788659
- S. McGowan, N. Burnet, A. Lomax, Treatment planning optimisation in proton therapy, Br. J. Radiol. 86 (2013), 20120288-20120288. https://doi.org/10.1259/bjr.20120288
- F. Foroudi, J. Wong, T. Kron, A. Rolfo, A. Haworth, P. Roxby, J. Thomas, A. Herschtal, D. Pham, S. Williams, Online adaptive radiotherapy for muscle-invasive bladder cancer: results of a pilot study, Int. J. Radiat. Oncol. Biol. Phys. 81 (2011) 765-771. https://doi.org/10.1016/j.ijrobp.2010.06.061
- S. Lim-Reinders, B.M. Keller, S. Al-Ward, A. Sahgal, A. Kim, Online adaptive radiation therapy, Int. J. Radiat. Oncol. Biol. Phys. 99 (2017) 994-1003. https://doi.org/10.1016/j.ijrobp.2017.04.023
- L. Nenoff, M. Matter, A.G. Jarhall, C. Winterhalter, J. Gorgisyan, M. Josipovic, G.F. Persson, P.M. af Rosenschold, D.C. Weber, A.J. Lomax, Daily adaptive proton therapy: is it appropriate to use analytical dose calculations for plan adaption? Int. J. Radiat. Oncol. Biol. Phys. 107 (2020) 747-755. https://doi.org/10.1016/j.ijrobp.2020.03.036
- E.B. Villarroel, X. Geets, E. Sterpin, Online adaptive dose restoration in intensity modulated proton therapy of lung cancer to account for interfractional density changes, Phys. Imag. Radiat. Oncol. 15 (2020) 30-37. https://doi.org/10.1016/j.phro.2020.06.004
- A. Thummerer, B.A. de Jong, P. Zaffino, A. Meijers, G.G. Marmitt, J. Seco, R.J. Steenbakkers, J.A. Langendijk, S. Both, M.F. Spadea, Comparison of the suitability of CBCT-and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients, Phys. Med. Biol. 65 (2020) 235036. https://doi.org/10.1088/1361-6560/abb1d6
- A. Thummerer, P. Zaffino, A. Meijers, G.G. Marmitt, J. Seco, R.J. Steenbakkers, J.A. Langendijk, S. Both, M.F. Spadea, A.C. Knopf, Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy, Phys. Med. Biol. 65 (2020), 095002. https://doi.org/10.1088/1361-6560/ab7d54
- A. Hoffmann, B. Oborn, M. Moteabbed, S. Yan, T. Bortfeld, A. Knopf, H. Fuchs, D. Georg, J. Seco, M.F. Spadea, MR-guided proton therapy: a review and a preview, Radiat. Oncol. 15 (2020) 1-13. https://doi.org/10.1186/s13014-019-1449-z
- S. Acharya, C. Wang, S. Quesada, M.A. Gargone, O. Ates, J. Uh, M.J. Krasin, T.E. Merchant, C.-h. Hua, Adaptive proton therapy for pediatric patients: improving the quality of the delivered plan with on-treatment MRI, Int. J. Radiat. Oncol. Biol. Phys. 109 (2021) 242-251. https://doi.org/10.1016/j.ijrobp.2020.08.036
- P.J. Taddei, D. Mirkovic, J.D. Fontenot, A. Giebeler, Y. Zheng, D. Kornguth, R. Mohan, W.D. Newhauser, Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams, Phys. Med. Biol. 54 (2009) 2259. https://doi.org/10.1088/0031-9155/54/8/001
- Y. An, J. Shan, S.H. Patel, W. Wong, S.E. Schild, X. Ding, M. Bues, W. Liu, Robust intensity-modulated proton therapy to reduce high linear energy transfer in organs at risk, Med. Phys. 44 (2017) 6138-6147. https://doi.org/10.1002/mp.12610
- S. Geninatti-Crich, A. Deagostino, A. Toppino, D. Alberti, P. Venturello, S. Aime, Boronated compounds for imaging guided BNCT applications, Anti-canc. Agents Med. Chem. (Form. Curr. Med. Chem.-Anti-Cancer Agents 12 (2012) 543-553. https://doi.org/10.2174/187152012800617786
- B.C. Das, D.P. Ojha, S. Das, T. Evans, Boron Compounds in Molecular Imaging, Boron-Based Compounds: Potential and Emerging Applications in Medicine, 2018, pp. 205-231.
- D.-K. Yoon, J.-Y. Jung, T.S. Suh, Application of proton boron fusion reaction to radiation therapy: a Monte Carlo simulation study, Appl. Phys. Lett. 105 (2014) 223507. https://doi.org/10.1063/1.4903345
- G. Cirrone, L. Manti, D. Margarone, G. Petringa, L. Giuffrida, A. Minopoli, A. Picciotto, G. Russo, F. Cammarata, P. Pisciotta, First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness, Sci. Rep. 8 (2018) 1-15.
- D.-K. Yoon, N. Naganawa, M. Kimura, M.-G. Choi, M.-S. Kim, Y.-J. Kim, M.W.-M. Law, S.-K. Djeng, H.-B. Shin, B.-Y. Choe, Application of proton boron fusion to proton therapy: experimental verification to detect the alpha particles, Appl. Phys. Lett. 115 (2019) 223701. https://doi.org/10.1063/1.5128953
- P. Blaha, C. Feoli, S. Agosteo, M. Calvaruso, F.P. Cammarata, R. Catalano, M. Ciocca, G.A.P. Cirrone, V. Conte, G. Cuttone, The proton-boron reaction increases the radiobiological effectiveness of clinical low-and high-energy proton beams: novel experimental evidence and perspectives, Front. Oncol. 11 (2021).
- M.-S. Kim, M. Wai-Ming Law, S.-K. Djeng, H.-B. Shin, M.-G. Choi, Y.-J. Kim, B.-Y. Choe, T.S. Suh, D.-K. Yoon, Synergy effect of alpha particles by using natural boron in proton therapy: computational verification, AIP Adv. 9 (2019) 115017. https://doi.org/10.1063/1.5124322
- G. Petringa, G. Cirrone, C. Caliri, G. Cuttone, L. Giuffrida, G. La Rosa, R. Manna, L. Manti, V. Marchese, C. Marchetta, Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy, J. Instrum. 12 (2017) C03059. https://doi.org/10.1088/1748-0221/12/03/C03059
- H.-B. Shin, M.-S. Kim, S. Kim, K.B. Kim, J.-Y. Jung, D.-K. Yoon, T.S. Suh, Quantitative analysis of prompt gamma ray imaging during proton boron fusion therapy according to boron concentration, Oncotarget 9 (2018) 3089. https://doi.org/10.18632/oncotarget.23201
- M. Suzuki, Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era, Int. J. Clin. Oncol. 25 (2020) 43-50. https://doi.org/10.1007/s10147-019-01480-4
- S.J. Frank, J.D. Cox, M. Gillin, R. Mohan, A.S. Garden, D.I. Rosenthal, G.B. Gunn, R.S. Weber, M.S. Kies, J.S. Lewin, Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice, Int. J. Radiat. Oncol. Biol. Phys. 89 (2014) 846-853. https://doi.org/10.1016/j.ijrobp.2014.04.019
- T. Tsurubuchi, M. Shirakawa, W. Kurosawa, K. Matsumoto, R. Ubagai, H. Umishio, Y. Suga, J. Yamazaki, A. Arakawa, Y. Maruyama, Evaluation of a novel boron-containing α-d-Mannopyranoside for BNCT, Cells 9 (2020) 1277. https://doi.org/10.3390/cells9051277
- F. Tommasino, M. Rovituso, S. Fabiano, S. Piffer, C. Manea, S. Lorentini, S. Lanzone, Z. Wang, M. Pasini, W. Burger, Proton beam characterization in the experimental room of the Trento Proton Therapy facility, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 869 (2017) 15-20. https://doi.org/10.1016/j.nima.2017.06.017
- D.K. Yoon, J.Y. Jung, K. Jo Hong, K. Sil Lee, T. Suk Suh, GPU-based prompt gamma ray imaging from boron neutron capture therapy, Med. Phys. 42 (2015) 165-169.
- H.-B. Shin, M.-S. Kim, M. Law, S.-K. Djeng, M.-G. Choi, B.W. Choi, S. Kang, D.- W. Kim, T.S. Suh, D.-K. Yoon, Application of sigmoidal optimization to reconstruct nuclear medicine image: comparison with filtered back projection and iterative reconstruction method, Nucl. Eng. Technol. 53 (2021) 258-265. https://doi.org/10.1016/j.net.2020.06.029
- D.M. Minsky, A. Valda, A. Kreiner, S. Green, C. Wojnecki, Z. Ghani, First tomographic image of neutron capture rate in a BNCT facility, Appl. Radiat. Isot. 69 (2011) 1858-1861. https://doi.org/10.1016/j.apradiso.2011.01.030
- B. Hales, T. Katabuchi, N. Hayashizaki, K. Terada, M. Igashira, T. Kobayashi, Feasibility study of SPECT system for online dosimetry imaging in boron neutron capture therapy, Appl. Radiat. Isot. 88 (2014) 167-170. https://doi.org/10.1016/j.apradiso.2013.11.135
- A. Winkler, H. Koivunoro, V. Reijonen, I. Auterinen, S. Savolainen, Prompt gamma and neutron detection in BNCT utilizing a CdTe detector, Appl. Radiat. Isot. 106 (2015) 139-144. https://doi.org/10.1016/j.apradiso.2015.07.040