• Title/Summary/Keyword: Fixed-bed column test

Search Result 6, Processing Time 0.021 seconds

Selective adsorption of Ba2+ using chemically modified alginate beads with enhanced Ba2+ affinity and its application to 131Cs production

  • Kim, Jin-Hee;Lee, Seung-Kon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3017-3026
    • /
    • 2022
  • The 131Cs radioisotope with a short half-life time and high average radiation energy can treat the cancer effectively in prostate brachytherapy. The typical 131Cs production processes have a separation step of the cesium from 131Ba to obtain a high specific radioactivity. Herein, we suggested a novel 131Cs separation method based on the Ba2+ adsorption of alginate beads. It is necessary to reduce the affinity of alginate beads to cesium ions for a high production yield. The carboxyl group of the alginate beads was replaced by a sulfonate group to reduce the cesium affinity while reinforcing their affinity to barium ions. The modified beads exhibited superior Ba2+ adsorption performances to native beads. In the fixed-bed column tests, the saturation time and adsorption capacity could be estimated with the Yoon-Nelson model in various injection flow rates and initial concentrations. In terms of the Cs elution, the modified alginate showed better performance (i.e., an elution over 88%) than the native alginate (i.e., an elution below 10%), indicating that the functional group modification was effective in reducing the affinity to cesium ions. Therefore, the separation of cesium from the barium using the modified alginate is expected to be an additional option to produce 131Cs.

Adsorption Characteristics of Pb(II) by Manganese Oxide Coated Activated Carbon in Fixed Bed Column Study (망간산화물이 코팅된 활성탄의 납 흡착특성에 관한 칼럼 실험)

  • Lee, Myoungeun;Lee, Chaeyoung;Chung, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.39-44
    • /
    • 2014
  • Effects of operating parameters on the breakthrough properties of Pb(II) by $Mn_3O_4$ coated activated carbon prepared by supercritical technique were investigated through fixed-bed column experiments. The mass transfer zone and equilibrium adsorption capacity were enhanced about 2.8 times for Pb(II) by $Mn_3O_4$ coating onto activated carbon. Increase of bed height enhanced the residence time of Pb(II) in adsorption zone, giving the higher breakthrough time, mass transfer zone and equilibrium adsorption capacity. Increase of flow rate reduced the residence time and diffusion of Pb(II) in adsorption zone, therefore decreased the equilibrium adsorption capacity. The higher inlet concentration of Pb(II) decreased the breakthrough time and mass transfer zone through the promotion of Pb(II) transfer onto adsorbent.

Adsorption of Trichloroethylene in Water by Coconut Carbon and Coconut Activated Carbon (야자껍질 탄화탄과 야자껍질 활성탄에 의한 수중 Trichloroethylene의 흡착에 관한 연구)

  • 김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.25-32
    • /
    • 1993
  • Granular activated carbon is commonly used in fixed-bed adsorbers to remove organic chemicals. In this experiment organic chemical solutions were prepared by adding the reagent grade organic chemical to distilled water. Isotherm adsorption tests of volatile organic chemicals were conducted using bottle-point technique and column test. Organic chemicals after passing through the column were extracted with hexane and analyzed with gas chromatography (Hewlett-Packard 5890) to check the adsorption capacity and breakthrough curve. The result were as follows: 1. The BET surface area of coconut activated carbon was 658~1,010 m$^2$/g where as coconut shell carbon was 6.6 m$^2$/g. Coconut activated carbon increased the BET surface area and adsorption capacity in bottle-point isotherm. 2. The adsorption capacity of coconut activated carbon for trichloroethylene (TCE) was reduced in the presence of humic substance. 3. A decrease in particle size of activated carbon resulted in higher adsorption capacity and lower intraparticle diffusion coefficient. It is reflected not only as a decrease in Freudlich adsorption capacity value (K) but also as an increase in Freudlich exponenent value (1/n).

  • PDF

Trihalomethane Removal by a Fixed Bed Carbon Adsorber (고정층(固定層) 활성탄(活性炭)에 의한 Trihalomethane의 제거(除去))

  • Chung, Tai Hak;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.87-95
    • /
    • 1983
  • Trihalomethane removal efficiency by a fixed bed carbon adsorber was a subject of this study. Along with laboratory scale column operations, a simple adsorption model was developed to predict removal efficiency. The adsorption model includes an overall mass transfer coefficient, K and Freundlich adsorption constants, $K_F$ and n. Simulation results showed that increasing K and $K_F$ or decreasing n would take more loading and prolong run time of the adsorption bed. Typical S-shaped breakthrough curves were obtained from the experiments. The operational results at $20^{\circ}C$ and $25^{\circ}C$ indicated that a moderate difference in water temperature would not affect the treatment efficiency significantly. The adsorption constants determined from the column operation and the model simulation were reasonably close to those obtained from the isotherm test. It may be concluded that trihalomethane can be removed successfully by a fixed bed carbon adsorber.

  • PDF

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

Vertical Flow Zeolite-Filled Reed Bed with Intermittent Feeding for Sewage Treatment (수직 흐름 제올라이트 갈대 여과상에 의한 생활하수 처리)

  • Seo, Jeoung-Yoon
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2007
  • A sewage was treated using a vertical flow zeolite-filled reed bed. The sewage from the student dormitory of Changwon National University was fed into the reed bed for 10 minutes every 6 hours at the hydraulic load of $314L/m^3{\cdot}$day. The filtering height of the reed bed was 100 em and the zeolite mixture was filled in the reed bed. The mixture consisted of the same volume of two types of zeolite: 0.5$\sim$1 mm and 1$\sim$3 mm in diameter. Annual average removal efficiency was 88 89.9%, $COD_{Cr}$ 86.1 %, $COD_{Mn}$ 81.2%, T-N 34.0%, $NH_4^+$-N 97.3% and T-P 34.6%. T-N of effluent was mostly $NO_3^-$-N and the concentration of $NO_2^-$-N in effluent was lower than 0.1 mg/L. All removal efficiencies did not show a remarkable seasonal change. The ranking of phosphorous fractions fixed to the zeolite in column test was Ca-P > Fe-P > reductant soluble Fe-P > occluded P > saloid P > AI-P at all depths of the filter. All phosphorous fractions except for AI-P reduced at deeper filter layer, while their content ratios increased at deeper filter layer. Organic matter content was the highest at the highest layer (0$\sim$5 cm from the top of the filter) and only small differences were observed at the deeper filter layer than 5 em from the top. Organic matter content increased at all depths of the filter with the operating time.