Acknowledgement
This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2017M2A2A6A05016598).
References
- R. Yang, J. Wang, H. Zhang, Dosimetric study of Cs-131, I-125, and Pd-103 seeds for permanent prostate brachytherapy, Cancer Biother. Rad. 24 (6) (2009) 701-705. https://doi.org/10.1089/cbr.2009.0648
- M.K. Murphy, R.K. Piper, L.R. Greenwood, M.G. Mitch, P.J. Lamperti, S.M. Seltzer, et al., Evaluation of the new cesium-131 seed for use in low-energy x-ray brachytherapy, Med. Phys. 31 (6) (2004) 1529-1538. https://doi.org/10.1118/1.1755182
- S. Katcoff, New barium and cesium isotopes: 12.0 d Ba131, 10.2 d Cs131, and long-lived Ba133*, Phys. Rev. 72 (12) (1947) 1160. https://doi.org/10.1103/PhysRev.72.1160
- M.R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J. 242 (2014) 127-135. https://doi.org/10.1016/j.cej.2013.12.072
- M. Chavez, L. De Pablo, T. Garcia, Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay, J. Hazard Mater. 175 (1-3) (2010) 216-223. https://doi.org/10.1016/j.jhazmat.2009.09.151
- J. Wu, B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao, N. Liu, Behavior and analysis of cesium adsorption on montmorillonite mineral, J. Environ. Radioact. 100 (10) (2009) 914-920. https://doi.org/10.1016/j.jenvrad.2009.06.024
- P. Rajec, K. Domianova, Cesium exchange reaction on natural and modified clinoptilolite zeolites, J. Radioanal. Nucl. Chem. 275 (3) (2008) 503-508. https://doi.org/10.1007/s10967-007-7105-3
- R. Cortes-Martinez, M. Olguin, M. Solache-Rios, Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems, Desalination 258 (1-3) (2010) 164-170. https://doi.org/10.1016/j.desal.2010.03.019
- H.A. Alamudy, K. Cho, Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid, Chem. Eng. J. 349 (2018) 595-602. https://doi.org/10.1016/j.cej.2018.05.137
- D.J. Yang, Z.F. Zheng, H.Y. Zhu, H.W. Liu, X.P. Gao, Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water, Adv. Mater. 20 (14) (2008) 2777-2781. https://doi.org/10.1002/adma.200702055
- M. Xu, G. Wei, N. Liu, L. Zhou, C. Fu, M. Chubik, W. Han, Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater, Nanoscale 6 (2) (2014) 722-725. https://doi.org/10.1039/C3NR03467D
- W.R. Gombotz, S. Wee, Protein release from alginate matrices, Adv. Drug Deliv. Rev. 31 (3) (1998) 267-285. https://doi.org/10.1016/S0169-409X(97)00124-5
- K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog. Polym. Sci. 37 (1) (2012) 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
- Y. Fei, Y. Li, S. Han, J. Ma, Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution, J. Colloid Interface Sci. 484 (2016) 196-204. https://doi.org/10.1016/j.jcis.2016.08.068
- G.T. Grant, E.R. Morris, D.A. Rees, P.J. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS (Fed. Eur. Biochem. Soc.) Lett. 32 (1) (1973) 195-198. https://doi.org/10.1016/0014-5793(73)80770-7
- A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials, Macromol. Biosci. 6 (8) (2006) 623-633. https://doi.org/10.1002/mabi.200600069
- I.P.S. Fernando, W. Lee, E.J. Han, G. Ahn, Alginate-based nanomaterials: fabrication techniques, properties, and applications, Chem. Eng. J. (2019) 123823.
- W.S. Tan, A.S.Y. Ting, Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu (II) removal from aqueous solution, Bioresour. Technol. 160 (2014) 115-118. https://doi.org/10.1016/j.biortech.2013.12.056
- Y. Huang, H. Wu, T. Shao, X. Zhao, H. Peng, Y. Gong, H. Wan, Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: mechanism and application in simulated electroplating wastewater, Chem. Eng. J. 339 (2018) 322-333. https://doi.org/10.1016/j.cej.2018.01.071
- S. Wang, T. Vincent, C. Faur, E. Guibal, Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads, Bioresour. Technol. 231 (2017) 26-35. https://doi.org/10.1016/j.biortech.2017.01.066
- M. Dai, Y. Liu, B. Ju, Y. Tian, Preparation of thermoresponsive alginate/starch ether composite hydrogel and its application to the removal of Cu (II) from aqueous solution, Bioresour. Technol. 294 (2019) 122192. https://doi.org/10.1016/j.biortech.2019.122192
- F. Wang, X. Lu, X. Li, Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery, J. Hazard Mater. 308 (2016) 75-83. https://doi.org/10.1016/j.jhazmat.2016.01.021
- H. Hong, B. Kim, J. Hong, J. Ryu, T. Ryu, K. Chung, I. Park, Enhanced Sr adsorption performance of MnO2-alginate beads in seawater and evaluation of its mechanism, Chem. Eng. J. 319 (2017) 163-169. https://doi.org/10.1016/j.cej.2017.02.132
- A. Mandla, S. Lahiri, Separation of 134Cs and 133Ba radionuclides by calcium alginate beads, J. Radioanal. Nucl. Chem. 290 (1) (2011) 115-118. https://doi.org/10.1007/s10967-011-1158-z
- T.A. Davis, B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae, Water Res. 37 (18) (2003) 4311-4330. https://doi.org/10.1016/S0043-1354(03)00293-8
- Z. Hubicki, D. Kolodynska, Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods, Ion Exchange Technologies, 2012, pp. 193-240.
- J. Roosen, S. Mullens, K. Binnemans, Multifunctional alginate-sulfonate-silica sphere-shaped adsorbent particles for the recovery of indium (III) from secondary resources, Ind. Eng. Chem. Res. 56 (30) (2017) 8677-8688. https://doi.org/10.1021/acs.iecr.7b01101
- H. Patel, Fixed-bed column adsorption study: a comprehensive review, Appl. Water Sci. 9 (3) (2019) 45. https://doi.org/10.1007/s13201-019-0927-7
- G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul, P. Fredericks, L. Grondahl, Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS, Biomacromolecules 8 (8) (2007) 2533-2541. https://doi.org/10.1021/bm070014y
- R. Pereira, A. Tojeira, D.C. Vaz, A. Mendes, P. Bartolo, Preparation and characterization of films based on alginate and aloe vera, Int. J. Polym. Anal. Char. 16 (7) (2011) 449-464. https://doi.org/10.1080/1023666X.2011.599923
- H. Bhandari, R. Srivastav, V. Choudhary, S. Dhawan, Enhancement of corrosion protection efficiency of iron by poly (aniline-co-amino-naphthol-sulphonic acid) nanowires coating in highly acidic medium, Thin Solid Films 519 (3) (2010) 1031-1039. https://doi.org/10.1016/j.tsf.2010.08.038
- M. Srimathi, R. Rajalakshmi, S. Subhashini, Polyvinyl alcohol-sulphanilic acid water soluble composite as corrosion inhibitor for mild steel in hydrochloric acid medium, Arab. J. Chem. 7 (5) (2014) 647-656. https://doi.org/10.1016/j.arabjc.2010.11.013
- X. Ouyang, X. Jiang, X. Qiu, D. Yang, Y. Pang, Effect of molecular weight of sulfanilic acid-phenol-formaldehyde condensate on the properties of cementitious system, Cement Concr. Res. 39 (4) (2009) 283-288. https://doi.org/10.1016/j.cemconres.2009.01.002
- Y. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (5) (1999) 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
- H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang, Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II), J. Colloid Interface Sci. 316 (2) (2007) 277-283. https://doi.org/10.1016/j.jcis.2007.07.075
- D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem. 3 (1) (2013) 55. https://doi.org/10.1186/2193-8865-3-55
- I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361-1403. https://doi.org/10.1021/ja02242a004
- Y. Peng, H. Huang, D. Liu, C. Zhong, Radioactive barium ion trap based on metal-organic framework for efficient and irreversible removal of barium from nuclear wastewater, ACS Appl. Mater. Interfaces 8 (13) (2016) 8527-8535. https://doi.org/10.1021/acsami.6b00900
- Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem. 39 (5) (2004) 599-613. https://doi.org/10.1016/S0032-9592(03)00132-8
- M. Jain, V. Garg, K. Kadirvelu, Cadmium (II) sorption and desorption in a fixed bed column using sunflower waste carbon calcium-alginate beads, Bioresour. Technol. 129 (2013) 242-248. https://doi.org/10.1016/j.biortech.2012.11.036
- A.P. Lim, A.Z. Aris, Continuous fixed-bed column study and adsorption modeling: removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons, Biochem. Eng. J. 87 (2014) 50-61. https://doi.org/10.1016/j.bej.2014.03.019
- S.R. Pilli, V.V. Goud, K. Mohanty, Biosorption of Cr (VI) on immobilized hydrilla verticillata in a continuous up-flow packed bed: prediction of kinetic parameters and breakthrough curves, Desalination Water Treat. 50 (1-3) (2012) 115-124. https://doi.org/10.1080/19443994.2012.708555
- Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J. 45 (8) (1984) 509-516. https://doi.org/10.1080/15298668491400197
- K. Jung, T. Jeong, J. Choi, K. Ahn, S. Lee, Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance, Bioresour. Technol. 244 (2017) 23-32. https://doi.org/10.1016/j.biortech.2017.07.133
- J. Salman, V. Njoku, B. Hameed, Batch and fixed-bed adsorption of 2, 4-dichlorophenoxyacetic acid onto oil palm frond activated carbon, Chem. Eng. J. 174 (1) (2011) 33-40. https://doi.org/10.1016/j.cej.2011.08.024