Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (KRF) funded by the Ministry of Education (NRF-2018R1D1A1B07049228).
References
- S.D. Bouffler, Evidence for variation in human radiosensitivity and its potential impact on radiological protection, Ann. ICRP 45 (2016) 280-289. https://doi.org/10.1177/0146645315623158
- D.G. Hirst, T. Robson, Molecular biology: the key to personalised treatment in radiation oncology? Br. J. Radiol. 83 (2010) 723-728. https://doi.org/10.1259/bjr/91488645
- H.S. Kim, S.C. Kim, S.J. Kim, C.H. Park, H.-C. Jeung, Y.B. Kim, et al., Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells, BMC Genom. 13 (2012) 348. https://doi.org/10.1186/1471-2164-13-348
- Q.E. He, Y.F. Tong, Z. Ye, L.X. Gao, Y.Z. Zhang, L. Wang, et al., A multiple genomic data fused SF2 prediction model, signature identification, and gene regulatory network inference for personalized radiotherapy, Technol. Cancer Res. Treat. 19 (2020), 1533033820909112.
- J.F. Torres-Roca, S. Eschrich, H. Zhao, G. Bloom, J. Sung, S. McCarthy, et al., Prediction of radiation sensitivity using a gene expression classifier, Cancer Res 65 (2005) 7169-7176. https://doi.org/10.1158/0008-5472.CAN-05-0656
- C. Zhang, L. Girard, A. Das, S. Chen, G. Zheng, K. Song, Nonlinear quantitative radiation sensitivity prediction model based on NCI-60 cancer cell lines, Sci. World J. 2014 (2014) 903602.
- E. Kim, Y. Chung, Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression, Nucl. Eng. Technol. (2021).
- A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012) 1097-1105.
- F. Murtagh, Multilayer perceptrons for classification and regression, Neurocomputing 2 (1991) 183-197. https://doi.org/10.1016/0925-2312(91)90023-5
- H. Sak, A.W. Senior, F. Beaufays, Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling, 2014.
- K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014 arXiv preprint arXiv:1409.1556.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1-9.
- R.G. Bristow, P.A. Hardy, R.P. Hill, Comparison between in vitro radiosensitivity and in vivo radioresponse of murine tumor cell lines. I: parameters of in vitro radiosensitivity and endogenous cellular glutathione levels, Int. J. Radiat. Oncol. Biol. Phys. 18 (1990) 133-145. https://doi.org/10.1016/0360-3016(90)90277-q
- C.M. West, Invited review: intrinsic radiosensitivity as a predictor of patient response to radiotherapy, Br. J. Radiol. 68 (1995) 827-837. https://doi.org/10.1259/0007-1285-68-812-827
- S. Eschrich, H. Zhang, H. Zhao, D. Boulware, J.-H. Lee, G. Bloom, et al., Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform, Int. J. Radiat. Oncol. Biol. Phys. 75 (2009) 497-505. https://doi.org/10.1016/j.ijrobp.2009.05.056
- T.D. Pfister, W.C. Reinhold, K. Agama, S. Gupta, S.A. Khin, R.J. Kinders, et al., Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity, Mol. Cancer Therapeut. 8 (2009) 1878-1884. https://doi.org/10.1158/1535-7163.MCT-09-0016
- M.W. Gardner, S.R. Dorling, Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences, Atmos. Environ. 32 (1998) 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0
- J.M. Johnson, T.M. Khoshgoftaar, Survey on deep learning with class imbalance, J. Big Data 6 (2019) 27. https://doi.org/10.1186/s40537-019-0192-5
- H. Yu, D.C. Samuels, Y-y Zhao, Y. Guo, Architectures and accuracy of artificial neural network for disease classification from omics data, BMC Genom. 20 (2019) 167. https://doi.org/10.1186/s12864-019-5546-z
- A. Sharma, E. Vans, D. Shigemizu, K.A. Boroevich, T. Tsunoda, DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture, Sci. Rep. 9 (2019) 11399. https://doi.org/10.1038/s41598-019-47765-6
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
- S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, D.J. Inman, 1D convolutional neural networks and applications: a survey, Mech. Syst. Signal Process. 151 (2021) 107398. https://doi.org/10.1016/j.ymssp.2020.107398
- T. Fushiki, Estimation of prediction error by using K-fold cross-validation, Stat. Comput. 21 (2011) 137-146. https://doi.org/10.1007/s11222-009-9153-8
- L.J. Peters, The ESTRO Regaud lecture. Inherent radiosensitivity of tumor and normal tissue cells as a predictor of human tumor response, Radiother. Oncol. 17 (1990) 177-190. https://doi.org/10.1016/0167-8140(90)90202-8
- S. Min, B. Lee, S. Yoon, Deep learning in bioinformatics, Briefings Bioinf. 18 (2016) 851-869. https://doi.org/10.1093/bib/bbw068
- G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700-4708.