DOI QR코드

DOI QR Code

Lithium Niobate (LiNbO3) Photonic Electric-Field Sensors

  • Jung, Hongsik (Dept. of Electronic and Electrical Fusion Engineering, College of Science & Technology, Hongik Unversity)
  • Received : 2022.07.11
  • Accepted : 2022.07.23
  • Published : 2022.07.31

Abstract

This study comprehensively reviewed four types of integrated-optic electric-field sensors based on titanium diffused lithium-niobate waveguides: symmetric and asymmetric Mach-Zehnder interferometers, 1×2 directional couplers, and Y-fed balanced-bridge Mach-Zehnder interferometers. First, we briefly explain the crystal properties and electro-optic effect of lithium niobate and the waveguide fabrication process. We theoretically analyzed the key parameters and operating principles of each sensor and antennas. We also describe and compare the design, simulation, implementation, and performance tests: dc and ac characteristics, frequency response, dynamic range, and sensitivity. The experimental results revealed that the sensitivity of the sensor based on the Y-fed balanced bridge Mach-Zehnder interferometer (YBB-MZI) was higher than that of the other types of sensors.

Keywords

References

  1. V. A. Rakov and F. Rachidi, "Overview of recent progress in lightning research and lightning protection," IEEE Trans. Electromagn. Compat., Vol. 51, No. 3, pp. 428-442, 2009. https://doi.org/10.1109/TEMC.2009.2019267
  2. J. B. Rosolem, C. F. Barbosa, C. Floridia, and E. W. Bezerra, "A passive opto-electronic lightning sensor based on electromagnetic field detection for utilities applications," Meas. Sci. Technol., Vol. 21, No. 9, pp. 094032(1)- 094032(5), 2010. https://doi.org/10.1088/0957-0233/21/9/094032
  3. C. Barthod, M. Passard, J. Bouillot, C. Galez, and M. Farzneh, "High electric field measurement and ice detection using a safe probe near power installations," Sens. Actuators A, Phys., Vol. 113, No. 2, pp. 140-146, 2004. https://doi.org/10.1016/j.sna.2004.02.007
  4. A. D. Yaghjian, "An overview of near-field antenna measurements," IEEE Trans. Antennas Propag., Vol. 34, No. 1, pp. 30-45, 1986. https://doi.org/10.1109/TAP.1986.1143727
  5. Y. Geng, R. Zeng, H. Jinliang, S. Chen, and B. Zhang, "The Design of Electric-optical Modulator Used in EMC Measurements", IEEE Int. Symp. Electromagn., pp. 1-6, 2007.
  6. B. Loader, M. Alexander, and R. Osawa, "Development of optical electric-field sensors for EMC measurement", IEEE Int. Symp. Electromagn., pp. 658-661, 2014.
  7. H. Trinks, G. Matz, and H. Schilling, "Electro-optical system for EMP measurement," IEEE Trans. Electromagn. Compat., Vol. EMC-22, No. 1, pp. 75-77, 1980. https://doi.org/10.1109/TEMC.1980.303841
  8. P. Drexler and P. Fiala, "Methods for high-power EM pulse measurement," IEEE Sensors J., Vol. 7, No. 7, pp. 1006-1011, 2007. https://doi.org/10.1109/JSEN.2007.896532
  9. C. Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, "High dynamic range electric field sensor for electromagnetic pulse detection," Opt. Express, Vol. 19, No. 18, pp. 17372-17377, 2011 https://doi.org/10.1364/OE.19.017372
  10. R. Zeng, B. Wang, B. Niu, and Z. Yu, "Development and application of integrated optical sensors for intense E-field measurement", Sensors, Vol. 12, No. 8, pp. 11406- 11434, 2012. https://doi.org/10.3390/s120811406
  11. M. Kanda and L. D. Driver, "An isotropic electric-field probe with tapered resistive dipoles for broad-band use, 100 KHz to 18 GHz", IEEE Trans. Microw. Theory Techn., Vol. MTT-35, No. 2, pp. 124-130, 1987.
  12. N. Kuwabara, K. Tajima, R. Kobayashi and F. Amemiya, "Development and analysis of electric-field sensor using LiNbO3 optical modulator", IEEE Trans. Electromagn. Compat., Vol. 34, No. 4, pp. 391-396, 1992. https://doi.org/10.1109/15.179271
  13. R. Kobayashi, K. Tajima, N. Kuwabara and M. Tokuda, "Theoretical analysis of the sensitivity of electric-field sensors using LiNbO3 optical modulator", Electron. Commun. Jpn., Vol. 80, No. 12, pp. 79-89, 1997.
  14. P. Liu, B. J. Lia, and Y. S. Trisno, "In search of a linear electrooptic amplitude modulator", IEEE Photonics Technol. Lett., Vol. 3, No. 2, pp. 144-146, 1991. https://doi.org/10.1109/68.76869
  15. C. Bulmer and W. Burns, "Linear interferometric modulators in Ti:LiNbO3", J. Light. Technol., Vol. 2, No. 4, pp. 512-521, 1984. https://doi.org/10.1109/JLT.1984.1073636
  16. C. H. Bulmer, "Sensitive, highly linear lithium niobate interferometers for electromagnetic field sensing", Appl. Phys. Lett., Vol. 53, No. 24, pp. 2368-2370, 1988. https://doi.org/10.1063/1.100232
  17. T. Meier, C. Kostrzewa, K. Petermann, and B. Schuppert, "Integrated optical E-field probes with segmented modulator electrodes", J. Light. Technol., Vol. 12, No. 8, pp. 1497-1503, 1994. https://doi.org/10.1109/50.317540
  18. H. Lu, Y. Li, and J. Zhong, "Design and Analysis of Broadband LiNbO3 Optical Waveguide Electric Field Sensor with Tapered Antenna," Sensors, Vol. 21, No. 11, pp. 3672(1)-3672(11). 2021.
  19. D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, and J. Latess, "An integrated photonic MachZehnder interferometer with no electrodes for sensing electric-fields", J. Light. Technol., Vol. 12, No. 6, pp. 1092-1098, 1994. https://doi.org/10.1109/50.296204
  20. T. H. Lee, F. T. Hwang, W. T. Shay, and C. T. Lee, "Electromagnetic field sensor using Mach-Zehnder waveguide modulator" Microw. Opt. Technol. Lett., Vol. 48, No. 9, pp. 1897-1899, 2006. https://doi.org/10.1002/mop.21776
  21. H. S. Jung, "Electro-optic field sensor utilizing Ti:LiNbO3 symmetric Mach-Zehnder interferometers", J. Opt. Soc. Korea , Vol. 16, No. 1, pp. 47-52, 2012. https://doi.org/10.3807/JOSK.2012.16.1.047
  22. H. S. Jung, "Photonic electric-field sensor utilizing an asymmetric Ti: LiNbO3 Mach-Zehnder interferometer with a dipole antenna", Fiber Integr. Opt., Vol. 31, No. 6, pp. 343-354, 2012. https://doi.org/10.1080/01468030.2012.747229
  23. Y. Yamaguchi, S. Nakajima, A. Kanno, T. Kawanishi, M. Izutsu and H. Nakajima, "High extinction ratio characteristics of over 60 dB Mach-Zehnder modulator with asymmetric power-splitting Y-branches on X-cut Ti:LiNbO3", Jpn. J. Appl. Phys., Vol. 53, No. 8S2, pp. 08MB03(1)-08MB03(4), 2014.
  24. C. Gutierrez-Martinez, J. Santos-Aguilar, J. Meza-Perez, and A. Morales-Diaz, "Novel Electric Field Sensing Scheme Using Integrated Optics LiNbO3 Unbalanced Mach-Zehnder Interferometers and Optical Delay-Modulation", J. Lightwave Technol., Vol. 35. No. 1, pp. 27-33, 2017. https://doi.org/10.1109/JLT.2016.2630003
  25. C. Gutierrez-Martinez and R. Ricardez-Trejo, "Remotely biasing the electro-optic response of an electric field sensing-detection system using LiNbO3 asymmetric Mach-Zehnder optical retarders", Applied Optics, Vol. 57, No. 32, pp. 9677-9682, 2018. https://doi.org/10.1364/AO.57.009677
  26. M. M. Howerton, C. H. Bulmer, and W. K. Burns, "1 ×2 directional coupler for electromagnetic field detection", Appl. Phys. Lett., Vol. 52, No. 22, pp. 1850-1852, 1988. https://doi.org/10.1063/1.99731
  27. D. An, Z. Shi, L. Sun, M. John, J. M. Taboada, Q. Zhou, X. Lu, and R. T. Chen, "Polymeric electro-optic modulator based on 1×2 Y-fed directional coupler. Appl. Phys. Lett., Vol. 76, No. 15, pp. 98-104, 2005.
  28. R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a Y-cut lithium niobate", IEEE Photonics Technol. Lett., Vol. 19, No. 16, pp. 1269-1271, 2007. https://doi.org/10.1109/LPT.2007.902265
  29. H. S. Jung, "Electro-optic electric-field sensors utilizing Ti: LiNbO3 1×2 directional coupler with dipole antennas", Opt. Eng., Vol. 52, No. 6, pp. 064402-064402, 2013. https://doi.org/10.1117/1.OE.52.6.064402
  30. C. Y. Lin, A. Wang, X. Zhang, B. S. Lee, and R. T. Chen, "EO-polymer waveguide based high dynamic range EM wave sensors", Proc. SPIE 8258, Organic Photonic Materials and Devices XIV, pp. 1-7, 2012.
  31. V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffused LiNbO3 strip waveguides", Appl. Phys. Lett., Vol. 32, No. 10, pp. 644-646, 1978. https://doi.org/10.1063/1.89880
  32. M. Schwerdt, J. Berger, B. Schuppert, and K. Petermann, "Integrated optical E-field sensors with a balanced detection scheme", IEEE Trans. Electromagn. Compat., Vol. 39, No. 4, pp. 386-390, 1997. https://doi.org/10.1109/15.649844
  33. M. A. Webster, M. W. Austin, and S. T. Winnall, "Balanced-bridge Mach-Zehnder interferometric optical modulator with an electrical bandwidth of 30 GHz", CLEO-PR 1997, pp. 266-267, Chiba, Japan 1997.
  34. R. Zeng, B. Wang, Z. Yu, B. Niu, and Y. Hua, "Integrated optical E-field sensor based on balanced Mach-Zehnder interferometer", Opt. Eng., Vol. 50, No. 11, pp. 114404- 114404, 2011. https://doi.org/10.1117/1.3651809
  35. A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada and M. Izutsu, "Low crosstalk balanced bridge interferometric-type optical switch for optical signal routing", IEEE J. Sel. Top. Quantum Electron., Vol. 19, No. 6, pp. 183-189, 2013. https://doi.org/10.1109/JSTQE.2013.2263121
  36. M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, and S. K. Park, "Polymeric electrooptic 2 × 2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer", IEEE J. Sel. Top. Quantum Electron., Vol. 7, No. 5, pp. 812-818, 2001. https://doi.org/10.1109/2944.979342
  37. H. S. Jung, "Integrated-optic electric-field sensor utilizing a Ti: LiNbO3 Y-fed balanced bridge Mach-Zehnder interferometric modulator with a segmented dipole antenna", J. Opt. Soc. Korea, Vol. 18, No. 6, pp. 739-745, 2014. https://doi.org/10.3807/JOSK.2014.18.6.739
  38. H. S. Jung, "An Integrated Photonic Electric-Field Sensor Utilizing a 1 × 2 YBB Mach-Zehnder Interferometric Modulator with a Titanium-Diffused Lithium Niobate Waveguide and a Dipole Patch Antenna", Crystals, Vol. 9, No. 9, pp. 458-459, 2019. https://doi.org/10.3390/cryst9090458
  39. J. E. Toney, Lithium Niobate Photonics, Artech House, Boston. pp. 11-35, 2015.
  40. R. V. Schmidt and I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3", Appl. Phys. Lett., Vol. 25, No. 8, pp. 458-460, 1974. https://doi.org/10.1063/1.1655547
  41. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassa, "Optically Induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3", Appl. Phys. Lett., Vol. 9, No. 1, pp. 72-74, 1996. https://doi.org/10.1063/1.1754607
  42. P. Gunter and J. P. Huignard, Photorefractive Materials and Their Applications I: Fundamental Phenomena, Springer-Verlag, Berlin, pp. 7-74, 1988.
  43. M. C. Gupta and J. Ballato, The Handbook of Photonics, 2nd ed.; CRC press, New York, pp. 1-19, 2006.
  44. D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, "Holographic recording in specially doped lithium nobate", Opt. Ex., Vol. 2, No. 12, pp. 491-502, 1998. https://doi.org/10.1364/OE.2.000491
  45. T. Volk, N. Rubinina, and M. Wohlecke, "Optical-Damage-Resistant Impurities in Lithium Niobate", J. Opt. Soc. Am. B, Vol. 11, No. 9, pp. 1681-1687, 1994. https://doi.org/10.1364/JOSAB.11.001681
  46. R. G. Hunsperger, Integrated Optics Theory and Technology, 6th ed, Springer-Verlag, New York, pp. 53-84, 2009.
  47. T. P. Pearsall, S. Chiang, and R. V. Schmidt, "Study of titanium diffusion in lithium-niobate low-loss optical waveguides by x-ray photoelectron spectroscopy", J. Appl. Phys., Vol. 47, No. 11, pp. 4794-4797, 1976. https://doi.org/10.1063/1.322518
  48. M. N. Aremenise, "Fabrication techniques of lithium niobate waveguides" IET Optoelectron., Vol. 135, No. 2, pp. 85-91, 1988. https://doi.org/10.1049/ip-j.1988.0019
  49. OptiBPM 9.0: Waveguide Optics Design Software. Optiwave Systems Inc., Ottawa, ON, Canada.
  50. M. L. Crawford, "Generation of Standard EM Fields Using TEM Transmission Cells", IEEE Transactions Electromag. Compata., Vol. EMC-16, No. 4, pp. 189-195, 1974. https://doi.org/10.1109/TEMC.1974.303364
  51. Y. Painchaud, M. Poulin, M. Morin, and T. Michel, "Performance of balanced detection in a coherent receiver", Opt. Ex., Vol. 17, No. 5, pp. 3659-3672, 2009. https://doi.org/10.1364/OE.17.003659
  52. C. T. Lee and W. H. Huang, "Integrated azimuthal lithium niobate electromagnetic field sensor with Mach-Zehnder waveguide modulator and micromultiannular antenna", Microw. Opt. Technol. Lett. , Vol. 53, No. 3, pp. 565-567, 2011. https://doi.org/10.1002/mop.25798
  53. B. Sun, F. Chen, K. Chen, Z. Hu, and Y. Cao, "Integrated Optical Electric-field Sensor from 10 KHz to 18 GHz", IEEE Photonics Technol. Lett., Vol. 24, No. 13, pp. 1106-1108, 2012. https://doi.org/10.1109/LPT.2012.2195780