DOI QR코드

DOI QR Code

Nanocatalyst Decorated Metal Oxides on Highly Selective Chemical Sensors

  • Jung, Ji-Won (School of Materials Science and Engineering, University of Ulsan (UOU)) ;
  • Jang, Ji-Soo (Electronic Materials Research Center, Korea Institute of Science and Technology)
  • Received : 2022.06.23
  • Accepted : 2022.07.16
  • Published : 2022.07.31

Abstract

The accurate detection of environmental and biomarker gas species has attracted increasing attention due to their broad applications, such as air quality monitoring, disease diagnosis, and explosive chemicals detection. To accurately detect target gas species using chemiresistive gas sensors, using nanocatalysts on semiconducting metal oxides (SMOs) is considered the most promising approach. This review summarizes recent studies on methods for nanocatalysts functionalization on SMOs to achieve the highly selective gas sensors. To this end, we discuss various nanocatalyst decorated metal oxide-based chemiresistive gas sensors and provide an insight to construct highly accurate gas sensors.

Keywords

Acknowledgement

J.S.J. acknowledges support from KIST (2E31771). This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT)(NRF-2021R1F1A1060285).

References

  1. S. J. Kim, S. J. Choi, J. S. Jang, H. J. Cho, and I. D. Kim, "Innovative nanosensor for disease diagnosis", Acc. Chem. Res., Vol. 50, No. 7, pp. 1587-1596, 2017. https://doi.org/10.1021/acs.accounts.7b00047
  2. J. S. Jang, S. J. Choi, S. J. Kim, M. Hakim, and I. D. Kim, "Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes", Adv. Funct. Mater., Vol. 26, No. 26, pp. 4740-4748, 2016. https://doi.org/10.1002/adfm.201600797
  3. J. S. Jang, L. R. Winter, C. Kim, J. D. Fortner, and M. Elimelech, "Selective and sensitive environmental gas sensors enabled by membrane overlayers", Trends Chem., Vol. 3, No. 7, pp. 547-560, 2021. https://doi.org/10.1016/j.trechm.2021.04.005
  4. J. S. Jang, H. J. Jung, S. Chong, D. H. Kim, J. Kim, S. O. Kim, and I. D. Kim, "2D materials decorated with ultrathin and porous graphene oxide for high stability and selective surface activity", Adv. Mater., Vol. 32, No. 36, p. 2002723, 2020. https://doi.org/10.1002/adma.202002723
  5. J. S. Jang, J. Lee, W. T. Koo, D. H. Kim, H. J. Cho, H. Shin, and I. D. Kim, "Pore-size-tuned graphene oxide membrane as a selective molecular sieving layer: toward ultraselective chemiresistors", Anal. Chem., Vol. 92, No. 1, pp. 957-965, 2019. https://doi.org/10.1021/acs.analchem.9b03869
  6. J. Lee, D. Cho, H. Chen, Y. S. Shim, J. Park, and S. Jeon, "Proximity-field nanopatterning for high-performance chemical and mechanical sensor applications based on 3D nanostructures", Appl. Phys. Rev., Vol. 9, No. 1, p. 011322, 2022. https://doi.org/10.1063/5.0081197
  7. D. Cho, J. M. Suh, S. H. Nam, S. Y. Park, M. Park, T. H. Lee, K. S. Choi, J. Lee, C. Ahn, and H. W. Jang, "Optically Activated 3D Thin-Shell TiO2 for Super-Sensitive Chemoresistive Responses: Toward Visible Light Activation", Adv. Sci., Vol. 8, No. 3, p. 2001883, 2021. https://doi.org/10.1002/advs.202001883
  8. J. M. Suh, D. Cho, S. Lee, T. H. Lee, J. W. Jung, J. Lee, S. H. Cho, T. H. Eom, J. W. Hong, and Y. S. Shim, "Rationally designed TiO2 nanostructures of continuous pore network for fast-responding and highly sensitive acetone sensor", Small Methods, Vol. 5, No. 12, p. 2100941, 2021. https://doi.org/10.1002/smtd.202100941
  9. C. Park, W. T. Koo, S. Chong, H. Shin, Y. H. Kim, H. J. Cho, J. S. Jang, D. H. Kim, J. Lee, and S. Park, "Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal-Organic Frameworks via Site-Specific Nucleation", Adv. Mater., Vol. 33, No. 38, p. 2101216, 2021. https://doi.org/10.1002/adma.202101216
  10. J. S. Jang, S. J. Kim, S. J. Choi, N. H. Kim, M. Hakim, A. Rothschild, and I. D. Kim, "Thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules", Nanoscale, Vol. 7, No. 39, pp. 16417-16426, 2015. https://doi.org/10.1039/c5nr04487a
  11. H. Shin, W. G. Jung, D. H. Kim, J. S. Jang, Y. H. Kim, W. T. Koo, J. Bae, C. Park, S. H. Cho, and B. J. Kim, "Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping", ACS Nano, Vol. 14, No. 9, pp. 11394-11405, 2020. https://doi.org/10.1021/acsnano.0c03687
  12. Z. Yang, X. Wang, H. Diao, J. Zhang, H. Li, H. Sun, and Z. Guo, "Encapsulation of platinum anticancer drugs by apoferritin", Chem. Commun., Vol. 33, pp. 3453-3455, 2007.
  13. Y. Shin, A. Dohnalkova, and Y. Lin, "Preparation of homogeneous gold- silver alloy nanoparticles using the apoferritin cavity as a nanoreactor", J. Phys. Chem. C, Vol. 114, No. 13, pp. 5985-5989, 2010. https://doi.org/10.1021/jp911004a
  14. S. J. Kim, S. J. Choi, J. S. Jang, N. H. Kim, M. Hakim, H. L. Tuller, and I. D. Kim, "Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath", ACS Nano, Vol. 10, No. 6, pp. 5891-5899, 2016. https://doi.org/10.1021/acsnano.6b01196
  15. S. J. Choi, S. J. Kim, H. J. Cho, J. S. Jang, Y. M. Lin, H. L. Tuller, G. C. Rutledge, and I. D. Kim, "WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates", Small, Vol. 12, No. 7, pp. 911-920, 2016. https://doi.org/10.1002/smll.201502905
  16. J. H. Kim, J. K. Kim, J. Liu, A. Curcio, J. S. Jang, I. D. Kim, F. Ciucci, and W. Jung, "Nanoparticle ex-solution for supported catalysts: materials design, mechanism and future perspectives", ACS Nano, Vol. 15, No. 1, pp. 81-110, 2020.
  17. D. Neagu, T. S. Oh, D. N. Miller, H. Menard, S. M. Bukhari, S. R. Gamble, R. J. Gorte, J. M. Vohs, and J. T. "Irvine, Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution", Nat. Commun., Vol. 6, No. 1, pp. 1-8, 2015.
  18. J. S. Jang, J. K. Kim, K. Kim, W. G. Jung, C. Lim, S. Kim, D. H. Kim, B. J. Kim, J. W. Han, and W. Jung, "DopantDriven Positive Reinforcement in Ex-Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials", Adv. Mater., Vol. 32, No. 46, p. 2003983, 2020. https://doi.org/10.1002/adma.202003983
  19. J. S. Jang, W. T. Koo, S. J. Choi, and I. D. Kim, "Metal organic framework-templated chemiresistor: sensing type transition from P-to-N using hollow metal oxide polyhedron via galvanic replacement", J. Am. Chem. Soc., Vol. 139, No. 34, pp. 11868-11876, 2017. https://doi.org/10.1021/jacs.7b05246
  20. W. T. Koo, J. S. Jang, and I. D. Kim, "Metal-organic frameworks for chemiresistive sensors", Chem, Vol. 5, No. 8, pp. 1938-1963, 2019. https://doi.org/10.1016/j.chempr.2019.04.013
  21. M. G. Campbell, S. F. Liu, T. M. Swager, and M. Dinca, "Chemiresistive sensor arrays from conductive 2D metal-organic frameworks", J. Am. Chem. Soc., Vol. 137, No. 43, pp. 13780-13783, 2015. https://doi.org/10.1021/jacs.5b09600
  22. S. Hermes, F. Schroder, S. Amirjalayer, R. Schmid, and R. A. Fischer, "Loading of porous metal-organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [L n M]a@ MOF-5", J. Mater. Chem., Vol. 16, No. 25, pp. 2464-2472, 2006. https://doi.org/10.1039/b603664c
  23. W. T. Koo, S. J. Choi, S. J. Kim, J. S. Jang, H. L. Tuller, and I. D. Kim, "Heterogeneous sensitization of metal-organic framework driven metal@ metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors", J. Am. Chem. Soc., Vol. 138, No. 40, pp. 13431- 13437, 2016. https://doi.org/10.1021/jacs.6b09167
  24. W. T. Koo, J. S. Jang, S. J. Choi, H. J. Cho, and I. D. Kim, "Metal-organic framework templated catalysts: dual sensitization of PdO-ZnO composite on hollow SnO2 nano-tubes for selective acetone sensors", ACS Appl. Mater & Interfaces, Vol. 9, No. 21, pp. 18069-18077, 2017. https://doi.org/10.1021/acsami.7b04657
  25. W. B. Jung, H. Park, J. S. Jang, D. Y. Kim, D. W. Kim, E. Lim, J. Y. Kim, S. Choi, J. Suk, and Y. Kang, "Polyelemental nanoparticles as catalysts for a Li-O2 battery", ACS Nano, Vol. 15, No. 3, pp. 4235-4244, 2021. https://doi.org/10.1021/acsnano.0c06528
  26. J. Y. Song, C. Kim, M. Kim, and K. M. Cho, "I. Gereige, W. B. Jung, H. Jeong, and H. T. Jung, "Generation of high-density nanoparticles in the carbothermal shock method", Sci. Adv., Vol. 7, No. 48, p. eabk2984, 2021. https://doi.org/10.1126/sciadv.abk2984
  27. Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, and M. Rehwoldt, "Carbothermal shock synthesis of high-entropy-alloy nanoparticles", Science, Vol. 359, No. 6383, pp. 1489-1494, 2018. https://doi.org/10.1126/science.aan5412
  28. M. Wu, M. Cui, L. Wu, S. Hwang, C. Yang, Q. Xia, G. Zhong, H. Qiao, W. Gan, and X. Wang, "Hierarchical polyelemental nanoparticles as bifunctional catalysts for oxygen evolution and reduction reactions", Adv. Energy Mater., Vol. 10, No. 25, p. 2001119, 2020. https://doi.org/10.1002/aenm.202001119
  29. S. Chae, J. Ahn, J.S. Nam, J. S. Jang, and I. D. Kim, "Thermal shock-stabilized metal catalysts on oxide hemitubes: Toward ultrasensitive chemiresistors", Appl. Surf. Sci., Vol. 595, p. 153460, 2022. https://doi.org/10.1016/j.apsusc.2022.153460
  30. H. Shin, D. H. Kim, W. Jung, J. S. Jang, Y. H. Kim, Y. Lee, K. Chang, J. Lee, J. Park, and K. Namkoong, "Surface activity-tuned metal oxide chemiresistor: toward direct and quantitative halitosis diagnosis", ACS Nano, Vol. 15, No. 9, pp. 14207-14217, 2021. https://doi.org/10.1021/acsnano.1c01350
  31. D. H. Kim, J. H. Cha, G. Shim, Y. H. Kim, J. S. Jang, H. Shin, J. Ahn, S. Y. Choi, and I. D. Kim, "Flash-thermochemical engineering of phase and surface activity on metal oxides", Chem, Vol. 8, No. 4, pp. 1014-1033, 2022. https://doi.org/10.1016/j.chempr.2021.12.003
  32. S. J. Joo, S. H. Park, C.vJ. Moon, and H. S. Kim, "A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique", ACS Appl. Mater. Interfaces, Vol. 7, No. 10, pp. 5674-5684, 2015. https://doi.org/10.1021/am506765p
  33. J. H. Cha, D. H. Kim, C. Park, S. J. Choi, J. S. Jang, S. Y. Yang, I. D. Kim, and S. Y. Choi, "Low-Thermal-Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boron-Doped Reduced Graphene Oxide", Adv. Sci., Vol. 7, No. 7, p. 1903318, 2020. https://doi.org/10.1002/advs.201903318