DOI QR코드

DOI QR Code

A study on channel reliability estimation of turbo decoder for underwater acoustic channel

수중 음향 채널에서 터보 복호기의 채널 신뢰도 추정에 관한 연구

  • Received : 2022.04.14
  • Accepted : 2022.06.24
  • Published : 2022.07.31

Abstract

Channel reliability estimation for iterative codes such as turbo codes is very important factor in time varying underwater acoustic channel, an incorrect estimation of channel reliability induced performance degradation. Therefore, this paper presents an optimal channel reliability estimation method for turbo coded FSK signal with rate of 1/3. The estimated BER algorithm is a method that can estimate the reliability of received data by comparing received data and decoded data, and we determine optimal channel reliability by using the method. In order to analyze the performance, the experiment was conducted on a lake in Munkyeong city by moving in the range of 300 m to 500 m. At the result of applying presented method to failed decoding packets, we confirm all packets are decoded successfully.

터보 부호화 같은 반복 부호에서 채널 신뢰도 추정은 시변하는 수중 음향 채널에서 성능 향상을 위한 중요한 요소로서, 부정확한 채널 신뢰도 추정은 오히려 성능을 더욱 악화시킨다. 따라서 본 논문에서는 시변 수중 음향 채널에서 부호화율 1/3을 가지는 터보 부호화된 Frequency Shift Keying(FSK) 신호의 최적의 채널 신뢰도 추정 방식을 분석하였다. 추정(Estimation Bit Error Rate, E-BER) 알고리즘은 복호된 데이터를 재부호화시켜 수신된 신호와의 차이를 산정하는 방식이며, 채널 신뢰도의 변화에 따른 E-BER을 구하여 최적의 채널 신뢰도를 결정할 수 있다. 성능 분석을 위해 문경의 호수에서 거리 300 m ~ 500 m의 이동성 실험을 하였으며, 데이터를 복호하지 못하는 패킷에 대해 최적의 채널 신뢰도를 추정하여 적용한 결과, 모두 복호하였음을 확인하였다.

Keywords

Acknowledgement

본 연구는 국방과학연구소의 연구비 지원(과제번호: UD200010DD)으로 수행되었습니다.

References

  1. M. Stojanovic and P. P. J. Beaujean, "Acoustic communication," in Handbook of Ocean Engineering, edited by D. Xiros (Springer- Verlag, Berlin, 2016).
  2. J. T. Bae, M. H. Kim, S. S. Choi, J. W. Jung, S. Y. Chun, and K. C. Dho, "The analysis about channel code performance of underwater channel" (in Korea), J. Acoust. Soc. Kr. 27, 286-295 (2008).
  3. T. J. Richardson and R. L. Urbanke, "Efficient encoding of low density parity-check codes," IEEE Trans. Inf. Theory, 47, 638-656 (2001). https://doi.org/10.1109/18.910579
  4. V. Durcek, K. Michal, and D. Milan, "Turbo-principlebased decoding in LDPC and turbo codes," Carpathian J. Electr. Comp. Eng. 10, 21-25 (2017).
  5. T. Li, H. Zhou, and L. Sun, "The study of LDPC code applied to underwater laser communication," Proc. Lasers and Electro-Optics/Pacific Rim, 11-27 (2009).
  6. J. W. Jung and K. M. Kim, "Optimizing of iterative turbo equalizer for underwater sensor communication," Int. J. Distrib. Sens. Netw. 3, 1-6 (2013). https://doi.org/10.1080/15501320601066537
  7. J. W. Jung and I. S. Kim, "A study on threshold detection algorithm for adaptive transmission in underwater acoustic communication" (in Korean), J. Acoust. Soc. Kr. 39, 585-591 (2020).
  8. J. E. Shin, H. W. Jeong, and J. W. Jung, "A study on weighting algorithm of multi-band transmission method using an stimated BER" (in Korean), J. Acoust. Soc. Kr. 40, 359-369 (2021).
  9. M. A. Deaett and P. P. Audi, "Interleaver performance for FSK transmission on the acoustic fading channel," Symposium on Autonomous Underwater Vehicle Technology, 313-317 (1990).
  10. B. Natarajan, C. R. Nassar, and S. Shattil, "Novel multi-carrier implementation of FSK for bandwidth efficient, high performance wireless systems," Proc. IEEE Int. Conf. Commun. 872-876 (2002).
  11. J. Hokfelt, O. Edfors, and T. Maseng, "A turbo code interleaver design criterion base on the performance of iterative decoding," IEEE Commun. Lett. 5, 52-54 (2001). https://doi.org/10.1109/4234.905933
  12. H. D. Shin and J. H. Lee, "Channel reliability estimation for turbo decoding in rayleigh fading channels with imperfect channel estimates," IEEE Commun. Lett. 6, 503-505 (2002). https://doi.org/10.1109/LCOMM.2002.804246
  13. J. Salz, "Opimum mean-square decision feedback eqaulization," Bell Syst. Tech. J. 52, 1341-1373 (1973). https://doi.org/10.1002/j.1538-7305.1973.tb02023.x