Acknowledgement
This work was funded by the Nuclear Waste Management Organization. The authors wish to acknowledge Drs. Yoshihisa Iida and Tetsuji Yamaguchi (Japan Atomic Energy Agency) for the fruitful discussion on Se sorption experiments and modelling.
References
- J. Noronha, Deep Geological Repository Conceptual Design Report, Crystalline/Sedimentary Rock Environment, Technical Report, Nuclear Waste Management Organization, May 2016. APM-REP-00440-0015 R001.
- M.Y. Hobbs, S.K. Frape, O. Shouakar-Stash, L.R. Kennell, Regional Hydrogeochemistry - Southern Ontario, Technical Report, Nuclear Waste Management Organization, 2011. NWMO DGR-TR-2011-12.
- P. Vilks, T. Yang, Sorption of Selected Radionuclides on Sedimentary Rocks in Saline Conditions - Updated Sorption Values, Technical Report, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-03.
- NWMO, Postclosure Safety Assessment of a Used Fuel Repository in Sedimentary Rock, Technical Report, Nuclear Waste Management Organization, 2013. NWMO TR-2013-07.
- NWMO, Postclosure Safety Assessment of a Used Fuel Repository in Crystalline Rock, Technical Report, Nuclear Waste Management Organization, 2017. NWMO TR-2017-02.
- Y. Iida, T. Tanaka, T. Yamaguchi, S. Nakayama, Sorption behavior of selenium(-II) on rocks under reducing conditions, J. Nucl. Sci. Technol. 48 (2) (2011) 279-291. https://doi.org/10.3327/jnst.48.279
- K.V. Ticknor, D.R. Harris, T.T. Vandergraaf, Sorption/Desorption Studies of Selenium on Fracture-Filling Minerals under Aerobic and Anaerobic Conditions, Technical Report, Atomic Energy of Canada, 1988. Technical Record TR-453.
- F.P. Bertetti, Determination of Sorption Properties for Sedimentary Rocks under Saline, Reducing Conditions - Key Radionuclides, Technical Report, Nuclear Waste Management Organization, 2016. NWMO-TR-2016-08.
- D.L. Parkhurst, C. Appelo, Description of Input and Examples for PHREEQC Version 3 - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Techniques and Methods, 2013 book 6, ch. A43.
- M.H. Bradbury, B. Baeyens, Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides, Geochem. Cosmochim. Acta 69 (4) (2005) 875-892. https://doi.org/10.1016/j.gca.2004.07.020
- M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part I: titration measurement and the sorption of Ni, Co, Eu, and Sn, Geochem. Cosmochim. Acta 73 (4) (2009) 990-1003. https://doi.org/10.1016/j.gca.2008.11.017
- M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part II: actinide sorption and linear free energy relationships, Geochem. Cosmochim. Acta 73 (4) (2009) 1004-1013. https://doi.org/10.1016/j.gca.2008.11.016
- R. Marsac, N.I. Banik, J. Lutzenkirchen, C.M. Marquardt, K. Dardenne, D. Schild, J. Rothe, A. Diascorn, T. Kupcik, T. Schafer, H. Geckeis, Neptunium redox speciation at the Illite surface, Geochem. Cosmochim. Acta 152 (2015) 39-51. https://doi.org/10.1016/j.gca.2014.12.021
- S. Nagasaki, J. Riddoch, T.S. Saito, J. Goguen, A. Walker, T. Yang, Sorption behaviour of Np(IV) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 313 (2017) 1-11. https://doi.org/10.1007/s10967-017-5290-2
- D. Soltermann, B. Baeyens, M.H. Bradbury, M.M. Fernandes, Fe(II) uptake on natural montmorillonites. II. Surface complexation modeling, Environ. Sci. Technol. 48 (15) (2014) 8698-8705. https://doi.org/10.1021/es501902f
- T. Sasaki, K. Ueda, T. Saito, N. Aoyagi, T. Kobayashi, I. Takagi, T. Kimura, Y. Tachi, Sorption of Eu3+ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling, J. Nucl. Sci. Technol. 53 (4) (2016) 592-601. https://doi.org/10.1080/00223131.2015.1066719
- S. Nagasaki, Sorption Properties of Np on Shale, Illite and Bentonite under Saline, Oxidizing and Reducing Conditions, Technical Report, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-02.
- T. Fanghanel, V. Neck, J.I. Kim, The ion product of H2O, dissociation constants of H2CO3 and pitzer parameters in the system Na+/H+/OH-/HCO3-/CO32-/ClO4-/H2O at 25℃, J. Solut. Chem. 25 (1996) 327-343. https://doi.org/10.1007/BF00972890
- M. Altmaier, V. Metz, V. Neck, R. Muller, T. Fanghanel, Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25℃, Geochem. Cosmochim. Acta 67 (19) (2003) 3595-3601. https://doi.org/10.1016/S0016-7037(03)00165-0
- M. Altmaier, V. Neck, T. Fanghanel, Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes, Radiochim. Acta 96 (9-11) (2009) 541-550.
- Y. Iida, T. Yamaguchi, T. Tanaka, S. Nakayama, Solubility of selenium at high ionic strength under anoxic conditions, J. Nucl. Sci. Technol. 47 (5) (2010) 431-438. https://doi.org/10.3327/jnst.47.431
- S. Nagasaki, T. Saito, T. Yang, Sorption behavior of Np(V) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 308 (1) (2016) 143-153. https://doi.org/10.1007/s10967-015-4332-x
- Naoki Sugiyama, Private Communication, 2014.
- J. Goguen, A. Walker, J. Racette, J. Riddoch, S. Nagasaki, Sorption of Pd on illite, MX-80 bentonite and shale in Na-Ca-Cl solutions, Nucl. Eng. Technol. 53 (3) (2021) 894-900. https://doi.org/10.1016/j.net.2020.09.001
- I. Grenthe, A. Plyasunov, On the use of semiempirical electrolyte theories for the modeling of solution chemical data, Pure Appl. Chem. 69 (5) (1997) 951-958. https://doi.org/10.1351/pac199769050951
- TDB Ver. 2014/03, Thermodynamic Database, Japan Atomic Energy Agency, June 2014, https://migrationdb.jaea.go.jp/cgi-bin/db_menu.cgi?title=TDB&ej=1.
- S. Pivovarov, Physico-chemical modeling of heavy metals (Cd, Zn, Cu) in natural environments, Encycl. Surf. Colloid Sci. 5 (2004) 468-492, 2004 Update Supplement.
- Y. Iida, T. Yamaguchi, T. Tanaka, Sorption behavior of hydroselenide (HSe) onto iron-containing minerals, J. Nucl. Sci. Technol. 51 (3) (2014) 305-322. https://doi.org/10.1080/00223131.2014.864457
- S. Goldberg, Chemical modeling of anion competition on goethite using the constant capacitance model, Soil Sci. Soc. Am. J. 49 (1985) 851-856. https://doi.org/10.2136/sssaj1985.03615995004900040013x
- Intera (Geofirma), Engineering Ltd. Descriptive Geosphere Site Model, Technical Report, Nuclear Waste Management Organization, 2011. NWMO DGR-TR-2011-24.
- Y. Iida, T. Yamaguchi, T. Tanaka, K. Hemmi, Sorption behavior of thorium onto granite and its constituent minerals, J. Nucl. Sci. Technol. 53 (10) (2016) 1573-1584. https://doi.org/10.1080/00223131.2016.1138901
- L.L. Stillings, Selenium: Critical Mineral Resources of the United States - Economic and Environmental Geology and Prospects for Future Supply, U.S. Geological Survey Professional Paper 1802, 2017 ch. Q.