DOI QR코드

DOI QR Code

Sorption of Se(-II) on illite, MX-80 bentonite, shale, and limestone in Na-Ca-Cl solutions

  • Received : 2021.05.12
  • Accepted : 2021.10.27
  • Published : 2022.05.25

Abstract

Selenium has been identified as an element of interest for the safety assessment of a deep geological repository (DGR) for used nuclear fuel. In Canada, groundwaters at DGR depths in sedimentary rocks have been observed to have a high ionic strength. This paper examines the sorption behavior of Se(-II) onto illite, MX-80 bentonite, Queenston shale, and argillaceous limestone in Na-Ca-Cl solutions of varying ionic strength (0.1-6 mol/kgw (m)) and across a pH range of 4-9. Little ionic strength dependence for Se(-II) sorption onto all solids was observed except that sorption at high ionic strength (6 m) was generally slightly lower than sorption at low ionic strength (0.1 m). Illite and MX-80 exhibited the expected results for anion sorption, while shale and limestone exhibited more constant sorption across the pH range tested. A non-electrostatic surface complexation model successfully predicted sorption of Se(-II) onto illite and MX-80 using the formation of an inner-sphere surface complex and an outer-sphere surface complex. Optimized values for the formation reactions of these surface species were proposed.

Keywords

Acknowledgement

This work was funded by the Nuclear Waste Management Organization. The authors wish to acknowledge Drs. Yoshihisa Iida and Tetsuji Yamaguchi (Japan Atomic Energy Agency) for the fruitful discussion on Se sorption experiments and modelling.

References

  1. J. Noronha, Deep Geological Repository Conceptual Design Report, Crystalline/Sedimentary Rock Environment, Technical Report, Nuclear Waste Management Organization, May 2016. APM-REP-00440-0015 R001.
  2. M.Y. Hobbs, S.K. Frape, O. Shouakar-Stash, L.R. Kennell, Regional Hydrogeochemistry - Southern Ontario, Technical Report, Nuclear Waste Management Organization, 2011. NWMO DGR-TR-2011-12.
  3. P. Vilks, T. Yang, Sorption of Selected Radionuclides on Sedimentary Rocks in Saline Conditions - Updated Sorption Values, Technical Report, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-03.
  4. NWMO, Postclosure Safety Assessment of a Used Fuel Repository in Sedimentary Rock, Technical Report, Nuclear Waste Management Organization, 2013. NWMO TR-2013-07.
  5. NWMO, Postclosure Safety Assessment of a Used Fuel Repository in Crystalline Rock, Technical Report, Nuclear Waste Management Organization, 2017. NWMO TR-2017-02.
  6. Y. Iida, T. Tanaka, T. Yamaguchi, S. Nakayama, Sorption behavior of selenium(-II) on rocks under reducing conditions, J. Nucl. Sci. Technol. 48 (2) (2011) 279-291. https://doi.org/10.3327/jnst.48.279
  7. K.V. Ticknor, D.R. Harris, T.T. Vandergraaf, Sorption/Desorption Studies of Selenium on Fracture-Filling Minerals under Aerobic and Anaerobic Conditions, Technical Report, Atomic Energy of Canada, 1988. Technical Record TR-453.
  8. F.P. Bertetti, Determination of Sorption Properties for Sedimentary Rocks under Saline, Reducing Conditions - Key Radionuclides, Technical Report, Nuclear Waste Management Organization, 2016. NWMO-TR-2016-08.
  9. D.L. Parkhurst, C. Appelo, Description of Input and Examples for PHREEQC Version 3 - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Techniques and Methods, 2013 book 6, ch. A43.
  10. M.H. Bradbury, B. Baeyens, Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides, Geochem. Cosmochim. Acta 69 (4) (2005) 875-892. https://doi.org/10.1016/j.gca.2004.07.020
  11. M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part I: titration measurement and the sorption of Ni, Co, Eu, and Sn, Geochem. Cosmochim. Acta 73 (4) (2009) 990-1003. https://doi.org/10.1016/j.gca.2008.11.017
  12. M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part II: actinide sorption and linear free energy relationships, Geochem. Cosmochim. Acta 73 (4) (2009) 1004-1013. https://doi.org/10.1016/j.gca.2008.11.016
  13. R. Marsac, N.I. Banik, J. Lutzenkirchen, C.M. Marquardt, K. Dardenne, D. Schild, J. Rothe, A. Diascorn, T. Kupcik, T. Schafer, H. Geckeis, Neptunium redox speciation at the Illite surface, Geochem. Cosmochim. Acta 152 (2015) 39-51. https://doi.org/10.1016/j.gca.2014.12.021
  14. S. Nagasaki, J. Riddoch, T.S. Saito, J. Goguen, A. Walker, T. Yang, Sorption behaviour of Np(IV) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 313 (2017) 1-11. https://doi.org/10.1007/s10967-017-5290-2
  15. D. Soltermann, B. Baeyens, M.H. Bradbury, M.M. Fernandes, Fe(II) uptake on natural montmorillonites. II. Surface complexation modeling, Environ. Sci. Technol. 48 (15) (2014) 8698-8705. https://doi.org/10.1021/es501902f
  16. T. Sasaki, K. Ueda, T. Saito, N. Aoyagi, T. Kobayashi, I. Takagi, T. Kimura, Y. Tachi, Sorption of Eu3+ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling, J. Nucl. Sci. Technol. 53 (4) (2016) 592-601. https://doi.org/10.1080/00223131.2015.1066719
  17. S. Nagasaki, Sorption Properties of Np on Shale, Illite and Bentonite under Saline, Oxidizing and Reducing Conditions, Technical Report, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-02.
  18. T. Fanghanel, V. Neck, J.I. Kim, The ion product of H2O, dissociation constants of H2CO3 and pitzer parameters in the system Na+/H+/OH-/HCO3-/CO32-/ClO4-/H2O at 25℃, J. Solut. Chem. 25 (1996) 327-343. https://doi.org/10.1007/BF00972890
  19. M. Altmaier, V. Metz, V. Neck, R. Muller, T. Fanghanel, Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25℃, Geochem. Cosmochim. Acta 67 (19) (2003) 3595-3601. https://doi.org/10.1016/S0016-7037(03)00165-0
  20. M. Altmaier, V. Neck, T. Fanghanel, Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes, Radiochim. Acta 96 (9-11) (2009) 541-550.
  21. Y. Iida, T. Yamaguchi, T. Tanaka, S. Nakayama, Solubility of selenium at high ionic strength under anoxic conditions, J. Nucl. Sci. Technol. 47 (5) (2010) 431-438. https://doi.org/10.3327/jnst.47.431
  22. S. Nagasaki, T. Saito, T. Yang, Sorption behavior of Np(V) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 308 (1) (2016) 143-153. https://doi.org/10.1007/s10967-015-4332-x
  23. Naoki Sugiyama, Private Communication, 2014.
  24. J. Goguen, A. Walker, J. Racette, J. Riddoch, S. Nagasaki, Sorption of Pd on illite, MX-80 bentonite and shale in Na-Ca-Cl solutions, Nucl. Eng. Technol. 53 (3) (2021) 894-900. https://doi.org/10.1016/j.net.2020.09.001
  25. I. Grenthe, A. Plyasunov, On the use of semiempirical electrolyte theories for the modeling of solution chemical data, Pure Appl. Chem. 69 (5) (1997) 951-958. https://doi.org/10.1351/pac199769050951
  26. TDB Ver. 2014/03, Thermodynamic Database, Japan Atomic Energy Agency, June 2014, https://migrationdb.jaea.go.jp/cgi-bin/db_menu.cgi?title=TDB&ej=1.
  27. S. Pivovarov, Physico-chemical modeling of heavy metals (Cd, Zn, Cu) in natural environments, Encycl. Surf. Colloid Sci. 5 (2004) 468-492, 2004 Update Supplement.
  28. Y. Iida, T. Yamaguchi, T. Tanaka, Sorption behavior of hydroselenide (HSe) onto iron-containing minerals, J. Nucl. Sci. Technol. 51 (3) (2014) 305-322. https://doi.org/10.1080/00223131.2014.864457
  29. S. Goldberg, Chemical modeling of anion competition on goethite using the constant capacitance model, Soil Sci. Soc. Am. J. 49 (1985) 851-856. https://doi.org/10.2136/sssaj1985.03615995004900040013x
  30. Intera (Geofirma), Engineering Ltd. Descriptive Geosphere Site Model, Technical Report, Nuclear Waste Management Organization, 2011. NWMO DGR-TR-2011-24.
  31. Y. Iida, T. Yamaguchi, T. Tanaka, K. Hemmi, Sorption behavior of thorium onto granite and its constituent minerals, J. Nucl. Sci. Technol. 53 (10) (2016) 1573-1584. https://doi.org/10.1080/00223131.2016.1138901
  32. L.L. Stillings, Selenium: Critical Mineral Resources of the United States - Economic and Environmental Geology and Prospects for Future Supply, U.S. Geological Survey Professional Paper 1802, 2017 ch. Q.