Browse > Article
http://dx.doi.org/10.1016/j.net.2021.10.039

Sorption of Se(-II) on illite, MX-80 bentonite, shale, and limestone in Na-Ca-Cl solutions  

Walker, Andrew (Engineering Physics, McMaster University)
Racette, Joshua (Engineering Physics, McMaster University)
Saito, Takumi (Nuclear Professional School, School of Engineering, The University of Tokyo)
Yang, Tammy (Tianxiao) (Nuclear Waste Management Organization)
Nagasaki, Shinya (Engineering Physics, McMaster University)
Publication Information
Nuclear Engineering and Technology / v.54, no.5, 2022 , pp. 1616-1622 More about this Journal
Abstract
Selenium has been identified as an element of interest for the safety assessment of a deep geological repository (DGR) for used nuclear fuel. In Canada, groundwaters at DGR depths in sedimentary rocks have been observed to have a high ionic strength. This paper examines the sorption behavior of Se(-II) onto illite, MX-80 bentonite, Queenston shale, and argillaceous limestone in Na-Ca-Cl solutions of varying ionic strength (0.1-6 mol/kgw (m)) and across a pH range of 4-9. Little ionic strength dependence for Se(-II) sorption onto all solids was observed except that sorption at high ionic strength (6 m) was generally slightly lower than sorption at low ionic strength (0.1 m). Illite and MX-80 exhibited the expected results for anion sorption, while shale and limestone exhibited more constant sorption across the pH range tested. A non-electrostatic surface complexation model successfully predicted sorption of Se(-II) onto illite and MX-80 using the formation of an inner-sphere surface complex and an outer-sphere surface complex. Optimized values for the formation reactions of these surface species were proposed.
Keywords
Sorption; Sorption distribution coefficient; 2SPNE SC/CE model; PHREEQC; Geological disposal; Selenium; Saline solution; Reducing conditions;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part II: actinide sorption and linear free energy relationships, Geochem. Cosmochim. Acta 73 (4) (2009) 1004-1013.   DOI
2 K.V. Ticknor, D.R. Harris, T.T. Vandergraaf, Sorption/Desorption Studies of Selenium on Fracture-Filling Minerals under Aerobic and Anaerobic Conditions, Technical Report, Atomic Energy of Canada, 1988. Technical Record TR-453.
3 M.H. Bradbury, B. Baeyens, Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides, Geochem. Cosmochim. Acta 69 (4) (2005) 875-892.   DOI
4 R. Marsac, N.I. Banik, J. Lutzenkirchen, C.M. Marquardt, K. Dardenne, D. Schild, J. Rothe, A. Diascorn, T. Kupcik, T. Schafer, H. Geckeis, Neptunium redox speciation at the Illite surface, Geochem. Cosmochim. Acta 152 (2015) 39-51.   DOI
5 T. Sasaki, K. Ueda, T. Saito, N. Aoyagi, T. Kobayashi, I. Takagi, T. Kimura, Y. Tachi, Sorption of Eu3+ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling, J. Nucl. Sci. Technol. 53 (4) (2016) 592-601.   DOI
6 M. Altmaier, V. Neck, T. Fanghanel, Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes, Radiochim. Acta 96 (9-11) (2009) 541-550.
7 D. Soltermann, B. Baeyens, M.H. Bradbury, M.M. Fernandes, Fe(II) uptake on natural montmorillonites. II. Surface complexation modeling, Environ. Sci. Technol. 48 (15) (2014) 8698-8705.   DOI
8 S. Nagasaki, Sorption Properties of Np on Shale, Illite and Bentonite under Saline, Oxidizing and Reducing Conditions, Technical Report, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-02.
9 T. Fanghanel, V. Neck, J.I. Kim, The ion product of H2O, dissociation constants of H2CO3 and pitzer parameters in the system Na+/H+/OH-/HCO3-/CO32-/ClO4-/H2O at 25℃, J. Solut. Chem. 25 (1996) 327-343.   DOI
10 Naoki Sugiyama, Private Communication, 2014.
11 I. Grenthe, A. Plyasunov, On the use of semiempirical electrolyte theories for the modeling of solution chemical data, Pure Appl. Chem. 69 (5) (1997) 951-958.   DOI
12 TDB Ver. 2014/03, Thermodynamic Database, Japan Atomic Energy Agency, June 2014, https://migrationdb.jaea.go.jp/cgi-bin/db_menu.cgi?title=TDB&ej=1.
13 L.L. Stillings, Selenium: Critical Mineral Resources of the United States - Economic and Environmental Geology and Prospects for Future Supply, U.S. Geological Survey Professional Paper 1802, 2017 ch. Q.
14 S. Nagasaki, T. Saito, T. Yang, Sorption behavior of Np(V) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 308 (1) (2016) 143-153.   DOI
15 Y. Iida, T. Yamaguchi, T. Tanaka, Sorption behavior of hydroselenide (HSe) onto iron-containing minerals, J. Nucl. Sci. Technol. 51 (3) (2014) 305-322.   DOI
16 J. Goguen, A. Walker, J. Racette, J. Riddoch, S. Nagasaki, Sorption of Pd on illite, MX-80 bentonite and shale in Na-Ca-Cl solutions, Nucl. Eng. Technol. 53 (3) (2021) 894-900.   DOI
17 S. Pivovarov, Physico-chemical modeling of heavy metals (Cd, Zn, Cu) in natural environments, Encycl. Surf. Colloid Sci. 5 (2004) 468-492, 2004 Update Supplement.
18 Intera (Geofirma), Engineering Ltd. Descriptive Geosphere Site Model, Technical Report, Nuclear Waste Management Organization, 2011. NWMO DGR-TR-2011-24.
19 Y. Iida, T. Yamaguchi, T. Tanaka, K. Hemmi, Sorption behavior of thorium onto granite and its constituent minerals, J. Nucl. Sci. Technol. 53 (10) (2016) 1573-1584.   DOI
20 S. Goldberg, Chemical modeling of anion competition on goethite using the constant capacitance model, Soil Sci. Soc. Am. J. 49 (1985) 851-856.   DOI
21 D.L. Parkhurst, C. Appelo, Description of Input and Examples for PHREEQC Version 3 - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Techniques and Methods, 2013 book 6, ch. A43.
22 M. Altmaier, V. Metz, V. Neck, R. Muller, T. Fanghanel, Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25℃, Geochem. Cosmochim. Acta 67 (19) (2003) 3595-3601.   DOI
23 J. Noronha, Deep Geological Repository Conceptual Design Report, Crystalline/Sedimentary Rock Environment, Technical Report, Nuclear Waste Management Organization, May 2016. APM-REP-00440-0015 R001.
24 M.Y. Hobbs, S.K. Frape, O. Shouakar-Stash, L.R. Kennell, Regional Hydrogeochemistry - Southern Ontario, Technical Report, Nuclear Waste Management Organization, 2011. NWMO DGR-TR-2011-12.
25 NWMO, Postclosure Safety Assessment of a Used Fuel Repository in Sedimentary Rock, Technical Report, Nuclear Waste Management Organization, 2013. NWMO TR-2013-07.
26 NWMO, Postclosure Safety Assessment of a Used Fuel Repository in Crystalline Rock, Technical Report, Nuclear Waste Management Organization, 2017. NWMO TR-2017-02.
27 Y. Iida, T. Yamaguchi, T. Tanaka, S. Nakayama, Solubility of selenium at high ionic strength under anoxic conditions, J. Nucl. Sci. Technol. 47 (5) (2010) 431-438.   DOI
28 P. Vilks, T. Yang, Sorption of Selected Radionuclides on Sedimentary Rocks in Saline Conditions - Updated Sorption Values, Technical Report, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-03.
29 Y. Iida, T. Tanaka, T. Yamaguchi, S. Nakayama, Sorption behavior of selenium(-II) on rocks under reducing conditions, J. Nucl. Sci. Technol. 48 (2) (2011) 279-291.   DOI
30 F.P. Bertetti, Determination of Sorption Properties for Sedimentary Rocks under Saline, Reducing Conditions - Key Radionuclides, Technical Report, Nuclear Waste Management Organization, 2016. NWMO-TR-2016-08.
31 M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part I: titration measurement and the sorption of Ni, Co, Eu, and Sn, Geochem. Cosmochim. Acta 73 (4) (2009) 990-1003.   DOI
32 S. Nagasaki, J. Riddoch, T.S. Saito, J. Goguen, A. Walker, T. Yang, Sorption behaviour of Np(IV) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 313 (2017) 1-11.   DOI