• Title/Summary/Keyword: Geological disposal

Search Result 237, Processing Time 0.029 seconds

Emplacement Process of the HLW in the Deep Geological Repository (지하처분장에서의 고준위폐기물 처분공정 개념)

  • 이종열;김성기;조동건;최희주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1013-1016
    • /
    • 2004
  • High level radioactive wastes, such as spent fuels generated from nuclear power plant, will be disposed in a deep geological repository. To maintain the integrity of the disposal canister and to carry out the process effectively, the emplacement process for the canister system in borehole of disposal tunnel should be well defined. In this study, the concept of the disposal canister emplacement process for deep geological disposal was established. To do this, the spent fuel arisings and disposal rate were reviewed. Also, not only design requirements, such canister and disposal depth but also preliminary repository layout concept were reviewed. Based on the requirements and the other bases, the canister emplacement process in the borehole of the disposal tunnel was established. The established concept of the disposal canister emplacement process will be improved continuously with the future studies. And this concept can be effectively used in implementing the reference repository system of our own case.

  • PDF

A modularized numerical framework for the process-based total system performance assessment of geological disposal systems

  • Kim, Jung-Woo;Jang, Hong;Lee, Dong Hyuk;Cho, Hyun Ho;Lee, Jaewon;Kim, Minjeong;Ju, Heejae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2828-2839
    • /
    • 2022
  • This study developed a safety assessment tool for geological disposal systems called APro, a systemically integrated modeling system based on modularizing and coupling the processes which need to be considered in a geological disposal system. Thermal, hydraulic, chemical, canister failure, radionuclide release and transport processes were considered in the current version of APro. Each of the unit processes in APro consists of a single Default Module, and several Alternative Modules which can increase the flexibility of the model. As an initial stage of developing the modularization concept and modeling interface, the Default Modules of each unit process were described, with one Alternative Module of chemical process. The computation part of APro is mainly a MATLAB workspace controlling COMSOL and PHREEQC, which are coupled by an operator splitting scheme. The APro model domain is a stylized geological disposal system employing the Swedish disposal concept (KBS-3 type), but the repository layout can be freely adjusted. In order to show the applicability of APro to the total system performance assessment of geological disposal system, some sample simulations were conducted. From the results, it was confirmed that coupling of the thermal and hydraulic processes and coupling of the canister failure and the radionuclide release processes were well reflected in APro. In addition, the technical connectivity between COMSOL and PHREEQC was also confirmed.

Analyses on Thermal Stability and Structural Integrity of the Improved Disposal Systems for Spent Nuclear Fuels in Korea

  • Lee, Jongyoul;Kim, Hyeona;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.21-36
    • /
    • 2020
  • With respect to spent nuclear fuels, disposal containers and bentonite buffer blocks in deep geological disposal systems are the primary engineered barrier elements that are required to isolate radioactive toxicity for a long period of time and delay the leakage of radio nuclides such that they do not affect human and natural environments. Therefore, the thermal stability of the bentonite buffer and structural integrity of the disposal container are essential factors for maintaining the safety of a deep geological disposal system. The most important requirement in the design of such a system involves ensuring that the temperature of the buffer does not exceed 100℃ because of the decay heat emitted from high-level wastes loaded in the disposal container. In addition, the disposal containers should maintain structural integrity under loads, such as hydraulic pressure, at an underground depth of 500 m and swelling pressure of the bentonite buffer. In this study, we analyzed the thermal stability and structural integrity in a deep geological disposal environment of the improved deep geological disposal systems for domestic light-water and heavy-water reactor types of spent nuclear fuels, which were considered to be subject to direct disposal. The results of the thermal stability and structural integrity assessments indicated that the improved disposal systems for each type of spent nuclear fuel satisfied the temperature limit requirement (< 100℃) of the disposal system, and the disposal containers were observed to maintain their integrity with a safety ratio of 2.0 or higher in the environment of deep disposal.

DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

  • Choi, Heui-Joo;Lee, Jong Youl;Choi, Jongwon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.29-40
    • /
    • 2013
  • Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea (사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Lee, Sang-Jin;Kim, Hyunjoo;Choi, Byong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • This study gives a conceptual and basic direction to develop a URL (underground research laboratory) program for establishing the performance and safety of a deep geological disposal system in Korea. The concept of deep geological disposal is one of the preferred methodologies for the final disposal of spent nuclear fuel (SNF). Advanced countries with radioactive waste disposal have developed their own disposal concepts reasonable to their social and environmental conditions and applied to their commercial projects. Deep geological disposal system is a multi-barrier system generally consisting of an engineered barrier and natural barrier. A disposal facility and its host environment can be relied on a necessary containment and isolation over timescales envisaged as several to tens of thousands of years. A disposal system is not allowed in the commercial stage of the disposal program without a validation and demonstration of the performance and safety of the system. All issues confirming performance and safety of a disposal system include investigation, analysis, assessment, design, construction, operation and closure from planning to closure of the deep geological repository. Advanced countries perform RD&D (research, development & demonstration) programs to validate the performance and safety of a disposal system using a URL facility located at the preferred rock area within their own territories. The results and processes from the URL program contribute to construct technical criteria and guidelines for site selection as well as suitability and safety assessment of the final disposal site. Furthermore, the URL program also plays a decisive role in promoting scientific understanding of the deep geological disposal system for stakeholders, such as the public, regulator, and experts.

The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook

  • Vomvoris, S.;Claudel, A.;Blechschmidt, I.;Muller, H.R.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.9-27
    • /
    • 2013
  • Nagra was established in 1972 by the Swiss nuclear power plant operators and the Federal Government to implement permanent and safe disposal of all types of radioactive waste generated in Switzerland. The Swiss Nuclear Energy Act specifies that these shall be disposed of in deep geological repositories. A number of different geological formations and sites have been investigated to date and an extended database of geological characteristics as well as data and state-of-the-art methodologies required for the evaluation of the long-term safety of repository systems have been developed. The research, development, and demonstration activities are further supported by the two underground research facilities operating in Switzerland, the Grimsel Test Site and the Mont Terri Project, along with very active collaboration of Nagra with national and international partners. A new site selection process was approved by the Federal Government in 2008 and is ongoing. This process is driven by the long-term safety and feasibility of the geological repositories and is based on a step-wise decision-making approach with a strong participatory component from the affected communities and regions. In this paper a brief history and the current status of the Swiss radioactive waste management program are presented and special characteristics that may be useful beyond the Swiss program are highlighted and discussed.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Basic Design of the Underground Research Tunnel for HLW disposal Research (고준위폐기물 처분연구를 위한 지하연구시설에 대한 기본설계)

  • 권상기;박정화;조원진;한필수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.199-207
    • /
    • 2004
  • In order to develop a safe geological disposal concept for the HLW from the nuclear power plants in Korea, it is necessary to evaluate the safety of the disposal concept in an underground research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, geological investigation had been carried out to develop the basic design of the small scale underground disposal research tunnel in KAERI.

  • PDF

Optimization of spent nuclear fuels per canister to improve the disposal efficiency of a deep geological repository in Korea

  • Jeong, Jongtae;Kim, Jung-Woo;Cho, Dong-Keun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2819-2827
    • /
    • 2022
  • The disposal area of a deep geological repository (DGR) for the disposal of spent nuclear fuels (SNFs) is estimated considering the spacing between deposition holes and between disposal tunnels, as determined by a thermal analysis using the decay heat of a reference SNF. Given the relatively large amount of decay heat of the reference SNF, the disposal area of the DGR is found to be overestimated. Therefore, we develop a computer program using MATLAB, termed ACom (Assembly Combination), to combine SNFs when stored in canisters such that the decay heat per canister is evenly distributed. The stability of ACom was checked and the overall distribution of the decay heat per canister was analyzed. Finally, ACom was applied to disposal scenarios suggested in the conceptual design of a DGR for SNFs, and it was confirmed that the decay heat per canister could be evenly distributed and that the maximum decay heat of the canister could be much lower than that of a canister estimated using a reference SNF. ACom can be used to improve the disposal efficiency by reducing the disposal area of a DGR for SNFs by ensuringg a relatively even distribution of decay heat per canister.