• Title/Summary/Keyword: 2SPNE SC/CE model

Search Result 4, Processing Time 0.015 seconds

Sorption of Pd on illite, MX-80 bentonite and shale in Na-Ca-Cl solutions

  • Goguen, Jared;Walker, Andrew;Racette, Joshua;Riddoch, Justin;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.894-900
    • /
    • 2021
  • This paper examines sorption of Pd(II) onto illite, MX-80 bentonite, and Queenston shale in Na-Ca-Cl solutions of varying ionic strength (IS) from 0.01 to 6.0 mol/L (M) and pHc ranging from 3 to 9 under atmospheric conditions. A 2-site protolysis non-electrostatic surface complexation and cation exchange model was applied to the Pd sorption onto illite and MX-80 using PHREEQC, and the model results were compared to the experimental ones obtained in this work. Surface complexation and cation exchange constants were estimated for both illite and MX-80 through the optimization process to bring the predicted distribution coefficients from the model into alignment with the experimentally derived values. These optimized surface complexation constants were compared to existing linear free energy relationships (LFER).

Sorption of Np(IV) on MX-80 in Ca-Na-Cl Type Reference Water of Crystalline Rock

  • Nagasaki, Shinya
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The pH dependence of sorption distribution coefficient (Kd) of Np(IV) on MX-80 in Ca-Na-Cl type solution with the ionic strength of 0.3 M, which was similar to one of the reference groundwaters in crystalline rock, was experimentally investigated under the reducing conditions. The overall trend of Kd on MX-80 was independent of pH at 5 ≤ pH ≤ 10 but increased as pH increased at pH ≤ 5. The 2-site protolysis non-electrostatic surface complexation and cation exchange model was applied to the experimentally measured pH dependence of Kd and the optimized surface complexation constants of Np(IV) sorption on MX-80 were estimated. The values of surface complexation constants in this work agreed relatively well with those in the Na-Ca-Cl solution previously evaluated, suggesting that compared to Na+, the competition of Ca2+ with Np(IV) for surface complexation on MX-80 was not much strong in Ca-Na-Cl solution. The sorption model well predicted the pH dependence of Kd values but slightly overestimated the sorption at the low pH region.

Sorption of Se(-II) on illite, MX-80 bentonite, shale, and limestone in Na-Ca-Cl solutions

  • Walker, Andrew;Racette, Joshua;Saito, Takumi;Yang, Tammy (Tianxiao);Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1616-1622
    • /
    • 2022
  • Selenium has been identified as an element of interest for the safety assessment of a deep geological repository (DGR) for used nuclear fuel. In Canada, groundwaters at DGR depths in sedimentary rocks have been observed to have a high ionic strength. This paper examines the sorption behavior of Se(-II) onto illite, MX-80 bentonite, Queenston shale, and argillaceous limestone in Na-Ca-Cl solutions of varying ionic strength (0.1-6 mol/kgw (m)) and across a pH range of 4-9. Little ionic strength dependence for Se(-II) sorption onto all solids was observed except that sorption at high ionic strength (6 m) was generally slightly lower than sorption at low ionic strength (0.1 m). Illite and MX-80 exhibited the expected results for anion sorption, while shale and limestone exhibited more constant sorption across the pH range tested. A non-electrostatic surface complexation model successfully predicted sorption of Se(-II) onto illite and MX-80 using the formation of an inner-sphere surface complex and an outer-sphere surface complex. Optimized values for the formation reactions of these surface species were proposed.

Sorption of Eu on MX-80 Bentonite in Na-Ca-Cl Brine Solutions

  • Yang, Jieci;Racette, Joshua;Garcia, Fabiola Guido;Nagasaki, Shinya;Yang, Tammy
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.151-160
    • /
    • 2022
  • The sorption of Eu on MX-80 bentonite in Na-Ca-Cl solutions is investigated at a molal proton concentration (pHm) range of 3 to 10 and an ionic strength (I) range of 0.1 to 6 m (mol·kgw-1). The sorption equilibrium of Eu on MX-80 is achieved within 14 to 21 d at I = 0.1 and 6 m. The sorption distribution coefficient (Kd) values of Eu for MX-80 increase as pHm increases from 3 to 6 for all I values, and they are independent of pHm between 8 and 10 at I ≥ 0.5 m. Meanwhile, at I = 0.1 m, the Kd value at pHm = 10 is slightly lower than those at pHm = 8 and 9. The Kd values are not affected by the I values between 0.5 m and 6 m, whereas the Kd value at I = 0.1 m is greater than those at I ≥ 0.5 m, except at pHm = 10. A two-site protolysis nonelectrostatic surface complexation and cation exchange sorption model is applied to the Eu sorption data for I ≤ 4 m, and the equilibrium constants of the sorption reactions are estimated.