Acknowledgement
The authors acknowledge the financial support received from the Mexican Secretariat of Public Education, SEP, under the project 12513606, entitled: Study and modelling of transmutation and diffusion phenomena in nuclear reactors using fractional calculus theory, by which the present development was possible.
References
- P. Radvanyi, J. Villain, The discovery of radioactivite, Compt. Rendus Phys. 18 (2017) 544-550. https://doi.org/10.1016/j.crhy.2017.10.008
- H. Bateman, The solution of a system of differential equations occurring in the theory of radio-active transformations, in: Proceedings of the Cambridge Philosophical Society, Mathematical and Physics Sciences 15, 1910, pp. 423-427.
- C. Anastopoulos, Decays of unstable quantum systems, Int. J. Theor. Phys. 58 (2019) 890-930. https://doi.org/10.1007/s10773-018-3984-z
- A.B. Calik, H. Ertik, B. Oder, H. Sirin, A fractional calculus approach to investigate the alpha decay processes, Int. J. Mod. Phys. E 22 (2013) 1350049 1-135004913. https://doi.org/10.1142/S0218301313500493
- K. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press Inc., New York and London, 1974.
- K.M. Owolabi, D. Baleanu, Emergent patterns in diffusive turing-like systems with fractional-order operator, Neural Comput. Appl. (2021).
- A. Traore, N. Sene, Model of economic growth in the context of fractional derivative, Alexandria Eng. J. 59 (2020) 4843-4850. https://doi.org/10.1016/j.aej.2020.08.047
- S.K. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana-Baleanu fractional order Willis Aneurysm and nonlinear singularly perturbed boundary value problems, Chaos, Solit. Fractals 142 (2021) 110390 1-14. https://doi.org/10.1016/j.chaos.2020.110390
- F.M. Khan, Z.U. Khan, Y. Lv, A. Yusuf, A. Din, Investigating of fractional order dengue epidemic model with ABC operator, Result. Phys. 24 (2021) 104075 1-10407511. https://doi.org/10.1016/j.rinp.2021.104075
- A. Kumar, H.V.S. Chauhan, C. Ravichandran, K.S. Nisar, Existence of solutions of non-autonomous fractional differential equations with integral impulse condition, Adv. Differ. Equ. (2020) 434.
- G.S. Teodoro, J.A.T. Machado, E.C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys. 388 (2019) 195-208. https://doi.org/10.1016/j.jcp.2019.03.008
- I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, 198, Slovak Republic, 1999.
- K.M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation, Springer, 2019.
- C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos, Solit. Fractals 125 (2019) 194-200. https://doi.org/10.1016/j.chaos.2019.05.014
- L. Kexue, P. Jigen, Laplace transform and fractional differential equations, Appl. Math. Lett. 24 (2011) 2019-2023. https://doi.org/10.1016/j.aml.2011.05.035
- F. Mainardi, Why the Mittag-Leffler function can Be considered the queen function on the fractional calculus? MDPI Entropy 22 (2020) 1359 1-135929. https://doi.org/10.3390/e22121359
- P. Agarwal, S.V. Rogosin, J.J. Trujillo, Certain fractional integral operators and the generalized multi-index Leffler functions, in: Proceedings - Mathematical Sciences 125, 2015, pp. 291-306. https://doi.org/10.1007/s12044-015-0243-6
- K. Diethelm, The Analysis of Fractional Differential Equations: an Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin Heidelberg, 2010.
- V.E. Tarasov, Generalized memory: fractional calculus approach, MDPI Fract. Fract. 2 (2018) 23 1-17. https://doi.org/10.3390/fractalfract2040023
- R.B. Nelsen, Consequences of the memoryless property for random variables, Am. Math. Mon. 94 (1987) 981-984. https://doi.org/10.2307/2322607
- R.V. Meghreblian, D.K. Holmes, Reactor Analysis, McGraw-Hill Book Company, 1960.
- W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, John Wiley & Sons, Inc., 1991.
- H.F. Zhang, G. Royer, α particle preformation in heavy nuclei and penetration probability, Phys. Rev. C 77 (2008), 054318 1-7. https://doi.org/10.1103/PhysRevC.77.054318
- Z. Vukadin, Analytical method for solving depletion equations, Atomkernenergie 27 (1998) 30-34.
- P.P.H. Wilson, ALARA: Analytic and Laplacian Adaptive Radioactivity Analysis, Doctoral dissertation, Fusion Technology Institute, University of Wisconsin, Madison Wisconsin. USA, 1999.
- R. Gorenflo, A.A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, second ed., Springer, Germany, 2014.
- H. Irmak, P. Agarwal, Some Comprehensive inequalities consisting of Mittag-Leffler type functions in the complex plane, Math. Model Nat. Phenom. 12 (2017) 3 65-71. https://doi.org/10.1051/mmnp/201712306
- S. Jain, P. Agarwal, A. Kilicman, Pathway fractional integral operator associated with 3m-parametric Mittag-Leffler functions, Int. J. Appl. Comput. Sci. Math. 4 (2018) 115 1-11517.
- A. Fernandez, I. Husain, Modified Mittag-Leffler functions with applications in complex formulae for fractional calculus, MDPI Fract. Fract. 4 (2020) 4511-4515.
- C.A. Cruz Lopez, J.L. Francois, Two alternatives approaches to the solution of cyclic chains in transmutation and decay problems, Comput. Phys. Commun. 254 (2020) 107225 1-10722516. https://doi.org/10.1016/j.cpc.2020.107225
- K.M. Owolabi, Numerical approach to chaotic pattern formation in diffusive predator-prey system with Caputo fractional operator, Numer. Methods Part. Differ. Equ. 37 (2021) 131-151. https://doi.org/10.1002/num.22522
- K.M. Owolabi, J.F. Gomez-Aguilar, G. Fernandez Anaya, J.E. Lavin-Delgado, E. Hernandez-Castillo, Modelling of chaotic processes with Caputo fractional order derivative, MDPI Entropy 22 (2020) 1027 1-102716. https://doi.org/10.3390/e22091027
- K.M. Owolabi, B. Karaagac, Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system, Chaos, Solit. Fractals 141 (2020) 110302 1-15. https://doi.org/10.1016/j.chaos.2020.110302
- P. Agarwal, J.J. Nieto, Some fractional integral formulas for the Mittag-Leffler type function with four parameters, Open Math. 13 (2015) 537-546.
- P. Agarwal, J. Choi, S. Jain, M. Mehdi Rashidi, Certain integrals associated with generalized Mittag-Leffler function, in: Communications of the Korean Mathematical Society 32, 2017, pp. 1 29-38. https://doi.org/10.4134/CKMS.c150247
- K.J. Moody, I.D. Hutcheon, P.M. Grant, Nuclear Forensic Analysis, second ed., Taylor & Francis Group, 2005.
- R. Dreher, Modified Bateman solutions for identical eigenvalues, Ann. Nucl. Energy 53 (2013) 427-438. https://doi.org/10.1016/j.anucene.2012.06.019