Acknowledgement
This work was supported by National Natural Science Foundation of China (12075318); State Key Laboratory of NBC Protection for Civilian (SKLNBC2018-01, SKLNBC2018-05, SKLNBC2020-04).
References
- M. Alamaniotis, J. Mattingly, L.H. Tsoukalas, Kernel-based machine learning for background estimation of NaI low-count gamma-ray spectra, IEEE Trans. Nucl. Sci. 60 (3) (2013) 2209-2221. https://doi.org/10.1109/TNS.2013.2260868
- M. Alamaniotis, S. Lee, T. Jevremovic, Intelligent analysis of low-count scintillation spectra using support vector regression and fuzzy logic, Nucl. Technol. 191 (1) (2015) 41-57. https://doi.org/10.13182/NT14-75
- M. Monterial, K.E. Nelson, S.E. Labov, S. Sangiorgio, Benchmarking Algorithm for Radio Nuclide Identification (BARNI) Literature Review (No. LLNL-SR-767242), Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2019.
- J. Kim, K.T. Lim, J. Kim, C.J. Kim, B. Jeon, K. Park, G. Cho, Quantitative analysis of NaI (Tl) gamma-ray spectrometry using an artificial neural network, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 944 (2019), 162549. https://doi.org/10.1016/j.nima.2019.162549
- J. Stinnett, C.J. Sullivan, H. Xiong, Uncertainty analysis of wavelet-based feature extraction for isotope identification on NaI gamma-ray spectra, IEEE Trans. Nucl. Sci. 64 (7) (2017) 1670-1676. https://doi.org/10.1109/TNS.2017.2676045
- J.M. Blackadar, Automatic isotope identifiers and their features, IEEE Sensor. J. 5 (4) (2005) 589-592. https://doi.org/10.1109/JSEN.2005.846374
- S. Dragovic, A. Onjia, Artificial neural network data analysis for classification of soils based on their radionuclide content, Russ. J. Phys. Chem. A 81 (9) (2007) 1477-1481. https://doi.org/10.1134/S0036024407090257
- H. Sahiner, X. Liu, Gamma spectral analysis by artificial neural network coupled with Monte Carlo simulations, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 953 (2020), 163062. https://doi.org/10.1016/j.nima.2019.163062
- P.E. Keller, L.J. Kangas, G.L. Troyer, S. Hashem, R.T. Kouzes, Nuclear spectral analysis via artificial neural networks for waste handling, IEEE Trans. Nucl. Sci. 42 (4) (1995) 709-715. https://doi.org/10.1109/23.467888
- C. Zhang, G. Hu, F. Luo, Y. Xiang, G. Ding, C. Chu, et al., Identification of SNM based on low-resolution gamma-ray characteristics and neural network, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 927 (2019) 155-160. https://doi.org/10.1016/j.nima.2019.02.023
- S. Dragovic, A. Onjia, Artificial neural network data analysis for classification of soils based on their radionuclide content, Russ. J. Phys. Chem. A 81 (9) (2007) 1477-1481. https://doi.org/10.1134/S0036024407090257
- L.J. Kangas, P.E. Keller, E.R. Siciliano, R.T. Kouzes, J.H. Ely, The use of artificial neural networks in PVT-based radiation portal monitors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 587 (2-3) (2008) 398-412. https://doi.org/10.1016/j.nima.2008.01.065
- J. He, X. Tang, P. Gong, P. Wang, L. Wen, X. Huang, L. Gao, Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network, Ann. Nucl. Energy 112 (2018) 1-8. https://doi.org/10.1016/j.anucene.2017.09.032
- C. Bobin, O. Bichler, V. Lourenco, C. Thiam, M. Thevenin, Real-time radionu- clide identification in g-emitter mixtures based on spiking neural network, Appl. Radiat. Isot. 109 (2016) 405-409. https://doi.org/10.1016/j.apradiso.2015.12.029
- M. Kamuda, J. Stinnett, C.J. Sullivan, Automated isotope identification algorithm using artificial neural networks, IEEE Trans. Nucl. Sci. 64 (7) (2017) 1858-1864. https://doi.org/10.1109/TNS.2017.2693152
- S.M. Galib, Applications of machine learning in nuclear imaging and radiation detection, 2019.
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1) (2014) 1929-1958.
- D.P. Kingma, J.L. Ba, Adam: a method for stochastic optimization, in: ICLR 2015 : International Conference on Learning Representations 2015, 2015.
- K. Hu, Z. Zhang, X. Niu, Y. Zhang, C. Cao, F. Xiao, X. Gao, Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function, Neurocomputing 309 (2018) 179-191. https://doi.org/10.1016/j.neucom.2018.05.011
- Y. Wu, J. Song, H. Zheng, G. Sun, L. Hao, P. Long, L. Hu, CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC, Ann. Nucl. Energy 82 (2015) 161-168. https://doi.org/10.1016/j.anucene.2014.08.058
- Gamma Library. Retrieved June 22, 2020, from https://www.nucleonica.com/Application/GammaLibrary.aspx.
- J. Kim, K. Park, G. Cho, Multi-radioisotope identification algorithm using an artificial neural network for plastic gamma spectra, Appl. Radiat. Isot. 147 (2019) 83-90. https://doi.org/10.1016/j.apradiso.2019.01.005
- S. Jhung, S. Hur, G. Cho, I. Kwon, A neural network approach for identification of gamma-ray spectrum obtained from silicon photomultipliers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 954 (2020), 161704. https://doi.org/10.1016/j.nima.2018.12.019
- C. Kim, D. Kim, Y. Lee, C. Park, M.N. Ullah, D. Kim, J.Y. Yeom, Radiation resistance and temperature dependence of Ce:GPS scintillation crystal, Radiat. Phys. Chem. 183 (2021), 109396. https://doi.org/10.1016/j.radphyschem.2021.109396