DOI QR코드

DOI QR Code

Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite

  • Akman, Ferdi. (Bingol University, Vocational School of Social Sciences, Department of Property Protection and Security, Program of Occupational Health and Safety) ;
  • Ogul, H. (Department of Nuclear Engineering, Faculty of Engineering and Architecture, Sinop University) ;
  • Ozkan, I. (The Faculty of Engineering, Department of Materials Science and Engineering, Alparslan Turkes Science and Technology University) ;
  • Kacal, M.R. (Giresun University, Faculty of Arts and Sciences, Department of Physics) ;
  • Agar, O. (Karamanoglu Mehmetbey University, Department of Physics) ;
  • Polat, H. (Bingol University, Vocational School of Technical Sciences, Department of Architecture and Urban Planning) ;
  • Dilsiz, K. (Bingol University, Faculty of Arts and Sciences, Department of Physics)
  • Received : 2020.11.20
  • Accepted : 2021.07.04
  • Published : 2022.01.25

Abstract

Advanced radiation applications have been widely used and extended to many fields. As a result of this fact, choosing an appropriate shielding material based on the radiation application has become vital. In this regard, the integration of elements into polymer composites has been investigated and contributed to the quantity and quality of radiation shielding materials. This study reports photon attenuation parameters and electromagnetic shielding effectiveness of a novel polymer composite prepared with a matrix reinforced with three different proportions (5, 10, and 15 wt%) of niobium content. Addition of Nb dopant improves both photon attenuation and electromagnetic shielding effectiveness for the investigated composites. Therefore, Nb(15%) polymer composite with highest concentration has been found to be the best absorber for ionizing and non-ionizing radiations. Consequently, the performed analyzes provide evidences that the prepared Nb-reinforced polymer composite could be effectively used as photon radiation attenuator and electromagnetic shielding material.

Keywords

References

  1. C. Priyanka, M.M. Rekha, R. Mathappan, A review on biological effects of radiation on human health and its preventive measures, Int. J. Heal. Care Bio. Sci. (2020) 34-38. https://www.saap.org.in/journals/index.php/ijhcbs/article/view/18.
  2. L. Hardell, C. Sage, Biological effects from electromagnetic field exposure and public exposure standards, Biomed. Pharmacother. 62 (2008) 104-109, https://doi.org/10.1016/j.biopha.2007.12.004.
  3. S. Mukhopadhyay, A. Sanyal, A review of the effects of non-ionizing electromagnetic radiation on human body and exposure standards, EMC Journal 14 (2002) 35. N 1&2.
  4. H. Mohan, Textbook of Pathology, Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, India, 2015.
  5. Z. Viskadourakis, K.C. Vasilopoulos, E.N. Economou, C.M. Soukoulis, G. Kenanakis, Electromagnetic shielding effectiveness of 3D printed polymer composites, Appl. Phys. A 123 (2017) 736, https://doi.org/10.1007/s00339-017-1353-z.
  6. C. Xia, J. Yu, S.Q. Shi, Y. Qiu, L. Cai, H.F. Wu, H. Ren, X. Nie, H. Zhang, Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance, Compos. B Eng. 114 (2017) 121-127, https://doi.org/10.1016/j.compositesb.2017.01.044.
  7. K. Chou, K. Huang, Z. Shih, Effect of mixing process on electromagnetic interference shielding effectiveness of nickel/acrylonitrile-butadiene-styrene composites, J. Appl. Polym. Sci. 97 (1) (2005) 128-135, https://doi.org/10.1002/app.21740.
  8. D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon 39 (2001) 279-285, https://doi.org/10.1016/S0008-6223(00)00184-6.
  9. V. Bogush, T. Borbot'ko, N. Kolbun, L. Lynkov, Novel composite shielding materials for supression of microwave radiation, in: International Conference on Microwaves, Radar & Wireless Communications, Krakow, 2006, pp. 645-647, https://doi.org/10.1109/MIKON.2006.4345262.
  10. J. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Math. Sci. Eng. R. 74 (7) (2013) 211-232, https://doi.org/10.1016/j.mser.2013.06.001.
  11. D. Chung, Materials for electromagnetic interference shielding, J. Mater. Eng. Perform. 9 (3) (2000) 350-354, https://doi.org/10.1361/105994900770346042.
  12. Y. Yim, K.Y. Rhee, S. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites, Compos. B Eng. 98 (2016) 120-125, https://doi.org/10.1016/j.compositesb.2016.04.061.
  13. F. Ozkalayci, M.R. Kacal, O. Agar, H. Polat, A. Sharma, F. Akman, Lead (II) chloride effects on nuclear shielding capabilities of polymer composites, J. Phys. Chem. Solid. 145 (2020) 109543, https://doi.org/10.1016/j.jpcs.2020.109543.
  14. C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel, E. Grulke, Polyethylene/boron nitride composites for space radiation shielding, J. Appl. Polym. Sci. 109 (4) (2008) 2529-2538, https://doi.org/10.1002/app.27949.
  15. N.I. Cherkashina, V.I. Pavlenko, A.V. Noskov, Radiation shielding properties of polyimide composite materials, Radiat. Phys. Chem. 159 (2019) 111-117, https://doi.org/10.1016/j.radphyschem.2019.02.041.
  16. M.R. Kacal, F. Akman, M.I. Sayyed, Evaluation of gamma-ray and neutron attenuation properties of some polymers, Nucl. Eng. Technol. 51 (3) (2019) 818-824, https://doi.org/10.1016/j.net.2018.11.011.
  17. M.I. Sayyed, H.O. Tekin, O. Kilicoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results, Results in Phys 11 (2018) 40-45, https://doi.org/10.1016/j.rinp.2018.08.029.
  18. F. Akman, H. Ogul, M.R. Kacal, H. Polat, K. Dilsiz, M.F. Turhan, Impact of lead(II) iodide on radiation shielding properties of polyester composites, Appl. Phys. A 126 (2020) 301, https://doi.org/10.1007/s00339-020-03494-6.
  19. Z. Alsayed, M.S. Badawi, R. Awad, A.M. El-Khatib, A.A. Thabet, Investigation of g-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite, Phys. Scripta 95 (2020), https://doi.org/10.1088/1402-4896/ab9a6e, 085301.
  20. M.M. El-Toony, Gh Eid, H.M. Algarni, T.F. Alhuwaymel, E.E. Abel-hady, Synthesis and characterisation of smart poly vinyl ester/Pb2O3 nanocomposite for gamma radiation shielding, Radiat. Phys. Chem. 168 (2020) 108536, https://doi.org/10.1016/j.radphyschem.2019.108536.
  21. M.R. Kacal, H. Polat, M. Oltulu, F. Akman, O. Agar, H.O. Tekin, Gamma Shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical, and simulation based study, Appl. Phys. A 126 (2020) 205, https://doi.org/10.1007/s00339-020-3382-2.
  22. M.A. El-Sarraf, A. El-Sayaed Abdo, Insulating epoxy/barite and polyester/barite composites for radiation attenuation, Appl. Radiat. Isot. 79 (2013) 18-24, https://doi.org/10.1016/j.apradiso.2013.04.026.
  23. A. El-Sayed, M.A.M. Ali, M.R. Ismail, Natural fibre high-density polyethylene and lead oxide composites for radiation shielding, Radiat. Phys. Chem. 66 (2003) 185-195, https://doi.org/10.1016/S0969-806X(02)00470-X.
  24. M. Erdem, O. Baykara, M. Dogru, F. Kuluozturk, A novel shielding material prepared from solid waste containing lead for gamma ray, Radiat. Phys. Chem. 79 (2010) 917-922, https://doi.org/10.1016/j.radphyschem.2010.04.009.
  25. L. Gerward, N. Guilbert, K. Jensen, H. Levring, WinXCom - a program for calculating X-ray attenuation coefficients Radiat, Phys. Chem. 71 (2004) 653-654, https://doi.org/10.1016/j.radphyschem.2004.04.040.
  26. S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods B 266 (2008) 3906-3912, https://doi.org/10.1016/j.nimb.2008.06.034.
  27. R. Liang, W. Cheng, H. Xiao, M. Shi, Z. Tang, N. Wang, A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric, Textil. Res. J. 88 (9) (2018) 973-986, https://doi.org/10.1177/0040517517693980.
  28. S.A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand Company, New York, 1943.
  29. H. Tong, G. Zhu, W. Mao, Development of EMI shielding materials characterized by low secondary electromagnetic radiation pollution, in: Second International Conference on Mechanic Automation and Control Engineering, IEEE, 2011, pp. 2075-2077.
  30. M. Esen, I. Ilhan, M. Karaaslan, R. Esen, Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces, Appl. Nanosci. 10 (2020) 551-561, https://doi.org/10.1007/s13204-019-01122-1.
  31. I. Ozkan, A. Telli, The effects of metal type, number of layers, and hybrid yarn placement on the absorption and reflection properties in electromagnetic shielding of woven fabrics, J. Eng. Fibers Fabr. 14 (2019), https://doi.org/10.1177/1558925019860961.
  32. I. Ozkan, Investigation of the technical and physical properties of metal composite 1×1 rib knitted fabrics, Ind. Textil. 71 (1) (2020) 41-49, https://doi.org/10.35530/IT.071.01.1693.
  33. C. Eke, O. Agar, C. Segebade, I. Boztosun, Attenuation properties of radiation shielding materials such as granite and marble against g-ray energies between 80 and 1350 keV, Radiochim. Acta 105 (10) (2017) 851-863. https://doi.org/10.1515/ract-2016-2690
  34. A. Sharma, M.I. Sayyed, O. Agar, M.R. Kacal, H. Polat, F. Akman, Photon-shielding performance of bismuth oxychloride-filled polyester concretes, Mater. Chem. Phys. 241 (2020) 122330. https://doi.org/10.1016/j.matchemphys.2019.122330
  35. F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karatas, , Study of gamma radiation attenuation properties of some selected ternary alloys, J. Alloys Compd. 782 (2019) 315-322. https://doi.org/10.1016/j.jallcom.2018.12.221
  36. F. Akman, O. Agar, M.R. Kacal, M. I, Sayyed Comparison of experimental and theoretical radiation shielding parameters of several environmentally friendly materials, Nucl. Sci. Tech. 30 (7) (2019) 110. https://doi.org/10.1007/s41365-019-0631-1
  37. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M. I, Sayyed A comparative study on gamma photon shielding features of various germanate glass systems, Compos. B Eng. 165 (2019) 636-647. https://doi.org/10.1016/j.compositesb.2019.02.022
  38. H.O. Tekin, O. Kilicoglu, E. Kavaz, E.E. Altunsoy, M. Almatari, O. Agar, M.I. Sayyed, M. I, The investigation of gamma-ray and neutron shielding parameters of Na2O-CaO-P2O5-SiO2 bioactive glasses using MCNPX code, Results in Phys 12 (2019) 1797-1804. https://doi.org/10.1016/j.rinp.2019.02.017
  39. M.I. Sayyed, F. Akman, A. Kumar, M.R. Kacal, Evaluation of radioprotection properties of some selected ceramic samples, Results in Phys 11 (2018) 1100-1104. https://doi.org/10.1016/j.rinp.2018.11.028
  40. C. Zeitlin, S.B. Guetersloh, L.H. Heilbronn, J. Miller, Measurements of materials shielding properties with 1 GeV/nuc 56Fe, Nucl. Instrum. Methods Phys. Res., Sect. B 252 (2006) 308-318, https://doi.org/10.1016/j.nimb.2006.08.011.
  41. S. Brzezinski, T. Rybicki, I. Karbownik, G. Malinowska, K. Sledzinska, Textile materials for electromagnetic field shielding made with the use of nano and micro-technology, Cent. Eur. J. Phys. 10 (5) (2012) 1190-1196, https://doi.org/10.2478/s11534-012-0094-z.
  42. K.B. Cheng, T.W. Cheng, R.N. Nadaraj, V.R.G. Dev, R. Neelakandan, Electromagnetic shielding effectiveness of the twill copper woven fabrics, J. Reinforc. Plast. Compos. 25 (7) (2006) 699-709, https://doi.org/10.1177/0731684406060578.
  43. H.G. Ortlek, C. Cunesoglu, G. Okyay, Y. Turkoglu, Investigation of electro-magnetic shielding and comfort properties of single Jersey fabrics knitted from hybrid yarns containing metal wire, Tekst. Konfeksiyon 22 (2) (2012) 90-101.