Acknowledgement
This work was financially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (grant number: 2019M2A7A1001758, 2020M2A8A1000972, and 2022M2D4A1052797) and by the U.S. Department of Energy, Nuclear Science User Facilities Program under award (grant number: DE-NE0008906) through the US-ROK INERI program.
References
- Pacific Northwest National Laboratory Capabilities for Molten Salt Reactor Technologies, Pacific Northwest National Laboratory, U.S. Department of Energy, 2020.
- Y.S. Kim, B.Y. Han, H.S. Shin, H.D. Kim, E.C. Jung, J.H. Jung, S.H. Na, Determination of uranium concentration in an ore sample using laser-induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 74-75 (2012) 190-193. https://doi.org/10.1016/j.sab.2012.06.029
- J. Park, S. Choi, S. Sohn, I.S. Hwang, Cyclic voltammetry on Zr, Sn, Fe, Cr and Co in LiCl-KCl salts at 500℃ for electrorefining of irradiated zircaloy-4 cladding, J. Electrochem. Soc. 164 (12) (2017) D744-D751. https://doi.org/10.1149/2.1501712jes
- S. Yoon, S. Choi, Spectroelectrochemical behavior of Cr, Fe, Co, and Ni in LiClKCl molten salt for decontaminating radioactive metallic wastes, J. Electrochem. Soc. 168 (1) (2021), 013504.
- C. Hanson, S. Phongikaroon, J.R. Scott, Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts, Spectrochim. Acta B Atom Spectrosc. 97 (2014) 79-85. https://doi.org/10.1016/j.sab.2014.04.012
- G. Hull, H. Lambert, K. Haroon, P. Coffey, T. Kerry, E.D. McNaghten, C.A. Sharrad, P. Martin, Quantitative prediction of rare earth concentrations in salt matrices using laser-induced breakdown spectroscopy for application to molten salt reactors and pyroprocessing, J. Anal. Atom. Spectro. 36 (1) (2021) 92-102. https://doi.org/10.1039/D0JA00352B
- S. Phongikaroon, Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy, Virginia Commonwealth Univ., Richmond, VA (United States), 2016, p. 143. Medium: ED; Size.
- A.N. Williams, K. Bryce, S. Phongikaroon, Measurement of cerium and gadolinium in solid lithium chlorideepotassium chloride salt using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 71 (10) (2017) 2302-2312. https://doi.org/10.1177/0003702817709298
- A.N. Williams, S. Phongikaroon, Laser-induced breakdown spectroscopy (LIBS) measurement of uranium in molten salt, Appl. Spectrosc. 72 (7) (2018) 1029-1039. https://doi.org/10.1177/0003702818760311
- A.N. Williams, S. Phongikaroon, Laser-induced breakdown spectroscopy (LIBS) in a novel molten salt aerosol system, Appl. Spectrosc. 71 (4) (2017) 744-749. https://doi.org/10.1177/0003702816648965
- A. Weisberg, R.E. Lakis, M.F. Simpson, L. Horowitz, J. Craparo, Measuring lanthanide concentrations in molten salt using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68 (9) (2014) 937-948. https://doi.org/10.1366/13-07390
- K. Song, D. Kim, H. Cha, Y. Kim, E.C. Jung, I. Choi, H.-S. Yoo, S. Oh, Characterization of laser-induced plasma in a vacuum using laser ablation mass spectrometry and laser-induced breakdown spectrometry, Microchem. J. 76 (1) (2004) 95-103. https://doi.org/10.1016/j.microc.2003.10.014
- Y. Lee, J.T.M. Amphlett, H. Ju, S. Choi, Rapid identification of Sr on surfaces of metals, porous medium, transparent materials using single-shot laserinduced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 159 (2019), 105649.
- E.C. Jung, D.H. Lee, J.I. Yun, J.G. Kim, J.W. Yeon, K. Song, Quantitative determination of uranium and europium in glass matrix by laser-induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 66 (9) (2011) 761-764. https://doi.org/10.1016/j.sab.2011.09.002
- Y. Gong, D. Choi, B.-Y. Han, J. Yoo, S.-H. Han, Y. Lee, Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy, J. Nucl. Mater. 453 (1) (2014) 8-15. https://doi.org/10.1016/j.jnucmat.2014.06.022
- A.J. Effenberger, Methods for Measurement of Heterogeneous Materials with Laser-Induced Breakdwon Spectroscopy (LIBS), University of California, San Diego, 2009.
- J.A.S. Nicholas A. Smith, Mark A. Williamson, Application of Laser-Induced Breakdown Spectroscopy to Electrochemical Process Monitoring of Molten Chloride Salts, presented at: International Atomic Energy Agency (IAEA): Linking Strategy, Vienna, Austria.
- D.-H. Lee, S.-C. Han, T.-H. Kim, J.-I. Yun, Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy, Anal. Chem. 83 (24) (2011) 9456-9461. https://doi.org/10.1021/ac2021689
- L. Ripoll, M. Hidalgo, Electrospray deposition followed by laser-induced breakdown spectroscopy (ESD-LIBS): a new method for trace elemental analysis of aqueous samples, J. Anal. Atom. Spectro. 34 (10) (2019) 2016-2026. https://doi.org/10.1039/C9JA00145J
- H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, M. Sabsabi, Improving laserinduced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF), J. Anal. Atom. Spectro. 24 (10) (2009) 1421-1428. https://doi.org/10.1039/b909485g
- A.M. Popov, A.N. Drozdova, S.M. Zaytsev, D.I. Biryukova, N.B. Zorov, T.A. Labutin, Rapid, direct determination of strontium in natural waters by laser-induced breakdown spectroscopy, J. Anal. Atom. Spectro. 31 (5) (2016) 1123-1130. https://doi.org/10.1039/C5JA00468C
- H. Andrews, S. Phongikaroon, Electrochemical and laser-induced breakdown spectroscopy signal fusion for detection of UCl3-GdCl3-MgCl2 in LiCl-KCl molten salt, Nucl. Technol. 207 (4) (2021) 617-626. https://doi.org/10.1080/00295450.2020.1776538
- H. Andrews, S. Phongikaroon, Development of an experimental routine for electrochemical and laser-induced breakdown spectroscopy composition measurements of SmCl3 in LiCl-KCl eutectic salt systems, Nucl. Technol. 205 (7) (2019) 891-904. https://doi.org/10.1080/00295450.2018.1551988
- D. Hudry, I. Bardez, A. Rakhmatullin, C. Bessada, F. Bart, S. Jobic, P. Deniard, Synthesis of rare earth phosphates in molten LiCleKCl eutectic: application to preliminary treatment of chlorinated waste streams containing fission products, J. Nucl. Mater. 381 (3) (2008) 284-289. https://doi.org/10.1016/j.jnucmat.2008.09.005
- Y.T. Jee, M. Park, S. Cho, J.-I. Yun, Selective morphological analysis of cerium metal in electrodeposit recovered from molten LiCl-KCl eutectic by radiography and computed tomography, Sci. Rep. 9 (1) (2019) 1346.
- J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. Mullins, Electrode degradation in lithium-ion batteries, ACS Nano 14 (2) (2020) 1243-1295. https://doi.org/10.1021/acsnano.9b04365
- H.-W. Ha, N.J. Yun, K. Kim, Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries, Electrochim. Acta 52 (9) (2007) 3236-3241. https://doi.org/10.1016/j.electacta.2006.09.066
- B. Chide, S. Maurice, N. Murdoch, J. Lasue, B. Bousquet, X. Jacob, A. Cousin, O. Forni, O. Gasnault, P.-Y. Meslin, J.-F. Fronton, M. Bassas-Portus, A. Cadu, A. Sournac, D. Mimoun, R.C. Wiens, Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology, Spectrochim. Acta B Atom Spectrosc. 153 (2019) 50-60. https://doi.org/10.1016/j.sab.2019.01.008
- B. Chide, S. Maurice, A. Cousin, B. Bousquet, D. Mimoun, O. Beyssac, P.- Y. Meslin, R.C. Wiens, Recording laser-induced sparks on Mars with the SuperCam microphone, Spectrochim. Acta B Atom Spectrosc. 174 (2020), 106000.
- N. Murdoch, B. Chide, J. Lasue, A. Cadu, A. Sournac, M. Bassas-Portus, X. Jacob, J. Merrison, J.J. Iversen, C. Moretto, C. Velasco, L. Pares, A. Hynes, V. Godiver, R.D. Lorenz, P. Cais, P. Bernadi, S. Maurice, R.C. Wiens, D. Mimoun, Laserinduced breakdown spectroscopy acoustic testing of the Mars 2020 microphone, Planet. Space Sci. 165 (2019) 260-271. https://doi.org/10.1016/j.pss.2018.09.009
- P.D. Barnett, N. Lamsal, S.M. Angel, Standoff laser-induced breakdown spectroscopy (LIBS) using a miniature wide field of view spatial heterodyne spectrometer with sub-microsteradian collection optics, Appl. Spectrosc. 71 (4) (2017) 583-590. https://doi.org/10.1177/0003702816687569
- C. Chal EArd, P. Mauchien, N. Andre, J. Uebbing, J.L. Lacour, C. Geertsen, Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry, J. Anal. Atom. Spectro. 12 (2) (1997) 183-188. https://doi.org/10.1039/A604456E
- V. Lednev, S.M. Pershin, A.F. Bunkin, Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam, J. Anal. Atom. Spectro. 25 (11) (2010) 1745-1757. https://doi.org/10.1039/c0ja00017e
- J.-M. Reess, M. Bonafous, L. Lapauw, O. Humeau, T. Fouchet, P. Bernardi, P. Cais, M. Deleuze, O. Forni, S. Maurice, S. Robinson, R. Wiens, The SuperCam Infrared Instrument on the NASA MARS2020 Mission: Performance and Qualification Results, SPIE2019.
- R. Hai, Z. He, X. Yu, L. Sun, D. Wu, H. Ding, Comparative study on selfabsorption of laser-induced tungsten plasma in air and in argon, Opt Express 27 (3) (2019) 2509-2520. https://doi.org/10.1364/OE.27.002509
- A. Hrdlicka, L. Zaoralkov a, M. Galiov a, T. Ctvrtnickova, V. Kanicky, V. Otruba, K. Novotny, P. Krasensky, J. Kaiser, R. Malina, K. Palenikov a, Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laserinduced breakdown spectroscopy (LIBS) of glazed wall tiles, Spectrochim. Acta B Atom Spectrosc. 64 (1) (2009) 74-78. https://doi.org/10.1016/j.sab.2008.10.043
- S. Maji, S. Kumar, K. Sundararajan, K. Sankaran, Feasibility study for quantification of lanthanides in LiFeKCl salt by laser induced breakdown spectroscopy, Int. J. Deal. Aspects Appl. Nuclear Chem. 314 (2) (2017) 1279-1285.
- D. Menut, P. Fichet, J.-L. Lacour, A. Rivoallan, P. Mauchien, Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples, Appl. Opt. 42 (30) (2003) 6063-6071. https://doi.org/10.1364/AO.42.006063
- K.R. Campbell, E.J. Judge, J.E. Barefield, J.P. Colgan, D.P. Kilcrease, K.R. Czerwinski, S.M. Clegg, Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: main oxide phase, Spectrochim. Acta B Atom Spectrosc. 133 (2017) 26-33. https://doi.org/10.1016/j.sab.2017.04.006
- M. Singh, A. Sarkar, J. Banerjee, R.K. Bhagat, Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 132 (2017) 1-7. https://doi.org/10.1016/j.sab.2017.03.012
- D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy: Cremers/Handbook of Laser-Induced Breakdown Spectroscopy, 2006.
- I. Gaona, J. Serrano, J. Moros, J.J. Laserna, Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance, Spectrochim. Acta B Atom Spectrosc. 96 (2014) 12-20. https://doi.org/10.1016/j.sab.2014.04.003
- M.L. Najarian, R.C. Chinni, Temperature and electron density determination on laser-induced breakdown spectroscopy (LIBS) plasmas: a physical chemistry experiment, J. Chem. Educ. 90 (2) (2013) 244-247. https://doi.org/10.1021/ed3003385
- A. Kramida, Yu Ralchenko, J. Reader, N.I.S.T. Asd Team, NIST Atomic Spectra Database, National Institute of Standards and Technology, Gaithersburg, 2020. Available:2020, version 5.8. https://physics.nist.gov/asd [Wed Oct 27 2021].
- Appendix IV - Stark broadening parametersz zsee [356]. And profilesx xsee [112]. For isolated neutral atom lines, in: H.R. Griem (Ed.), Pure and Applied Physics, Elsevier 1974, pp. 320-364.