DOI QR코드

DOI QR Code

In-situ measurement of Ce concentration in high-temperature molten salts using acoustic-assisted laser-induced breakdown spectroscopy with gas protective layer

  • Yunu Lee (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Seokjoo Yoon (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Nayoung Kim (Department of Nuclear Engineering, Seoul National University) ;
  • Dokyu Kang (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hyeongbin Kim (Department of Nuclear Engineering, Seoul National University) ;
  • Wonseok Yang (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Milos Burger (Department of Nuclear Engineering and Radiological Sciences, University of Michigan) ;
  • Igor Jovanovic (Department of Nuclear Engineering and Radiological Sciences, University of Michigan) ;
  • Sungyeol Choi (Department of Nuclear Engineering, Seoul National University)
  • Received : 2022.03.26
  • Accepted : 2022.07.18
  • Published : 2022.12.25

Abstract

An advanced nuclear reactor based on molten salts including a molten salt reactor and pyroprocessing needs a sensitive monitoring system suitable for operation in harsh environments with limited access. Multi-element detection is challenging with the conventional technologies that are compatible with the in-situ operation; hence laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential alternative. However, limited precision is a chronic problem with LIBS. We increased the precision of LIBS under high temperature by protecting optics using a gas protective layer and correcting for shotto-shot variance and lens-to-sample distance using a laser-induced acoustic signal. This study investigates cerium as a surrogate for uranium and corrosion products for simulating corrosive environments in LiCl-KCl. While the un-corrected limit of detection (LOD) range is 425-513 ppm, the acoustic-corrected LOD range is 360-397 ppm. The typical cerium concentrations in pyroprocessing are about two orders of magnitude higher than the LOD found in this study. A LIBS monitoring system that adopts these methods could have a significant impact on the ability to monitor and provide early detection of the transient behavior of salt composition in advanced molten salt-based nuclear reactors.

Keywords

Acknowledgement

This work was financially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (grant number: 2019M2A7A1001758, 2020M2A8A1000972, and 2022M2D4A1052797) and by the U.S. Department of Energy, Nuclear Science User Facilities Program under award (grant number: DE-NE0008906) through the US-ROK INERI program.

References

  1. Pacific Northwest National Laboratory Capabilities for Molten Salt Reactor Technologies, Pacific Northwest National Laboratory, U.S. Department of Energy, 2020.
  2. Y.S. Kim, B.Y. Han, H.S. Shin, H.D. Kim, E.C. Jung, J.H. Jung, S.H. Na, Determination of uranium concentration in an ore sample using laser-induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 74-75 (2012) 190-193. https://doi.org/10.1016/j.sab.2012.06.029
  3. J. Park, S. Choi, S. Sohn, I.S. Hwang, Cyclic voltammetry on Zr, Sn, Fe, Cr and Co in LiCl-KCl salts at 500℃ for electrorefining of irradiated zircaloy-4 cladding, J. Electrochem. Soc. 164 (12) (2017) D744-D751. https://doi.org/10.1149/2.1501712jes
  4. S. Yoon, S. Choi, Spectroelectrochemical behavior of Cr, Fe, Co, and Ni in LiClKCl molten salt for decontaminating radioactive metallic wastes, J. Electrochem. Soc. 168 (1) (2021), 013504.
  5. C. Hanson, S. Phongikaroon, J.R. Scott, Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts, Spectrochim. Acta B Atom Spectrosc. 97 (2014) 79-85. https://doi.org/10.1016/j.sab.2014.04.012
  6. G. Hull, H. Lambert, K. Haroon, P. Coffey, T. Kerry, E.D. McNaghten, C.A. Sharrad, P. Martin, Quantitative prediction of rare earth concentrations in salt matrices using laser-induced breakdown spectroscopy for application to molten salt reactors and pyroprocessing, J. Anal. Atom. Spectro. 36 (1) (2021) 92-102. https://doi.org/10.1039/D0JA00352B
  7. S. Phongikaroon, Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy, Virginia Commonwealth Univ., Richmond, VA (United States), 2016, p. 143. Medium: ED; Size.
  8. A.N. Williams, K. Bryce, S. Phongikaroon, Measurement of cerium and gadolinium in solid lithium chlorideepotassium chloride salt using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 71 (10) (2017) 2302-2312. https://doi.org/10.1177/0003702817709298
  9. A.N. Williams, S. Phongikaroon, Laser-induced breakdown spectroscopy (LIBS) measurement of uranium in molten salt, Appl. Spectrosc. 72 (7) (2018) 1029-1039. https://doi.org/10.1177/0003702818760311
  10. A.N. Williams, S. Phongikaroon, Laser-induced breakdown spectroscopy (LIBS) in a novel molten salt aerosol system, Appl. Spectrosc. 71 (4) (2017) 744-749. https://doi.org/10.1177/0003702816648965
  11. A. Weisberg, R.E. Lakis, M.F. Simpson, L. Horowitz, J. Craparo, Measuring lanthanide concentrations in molten salt using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68 (9) (2014) 937-948. https://doi.org/10.1366/13-07390
  12. K. Song, D. Kim, H. Cha, Y. Kim, E.C. Jung, I. Choi, H.-S. Yoo, S. Oh, Characterization of laser-induced plasma in a vacuum using laser ablation mass spectrometry and laser-induced breakdown spectrometry, Microchem. J. 76 (1) (2004) 95-103. https://doi.org/10.1016/j.microc.2003.10.014
  13. Y. Lee, J.T.M. Amphlett, H. Ju, S. Choi, Rapid identification of Sr on surfaces of metals, porous medium, transparent materials using single-shot laserinduced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 159 (2019), 105649.
  14. E.C. Jung, D.H. Lee, J.I. Yun, J.G. Kim, J.W. Yeon, K. Song, Quantitative determination of uranium and europium in glass matrix by laser-induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 66 (9) (2011) 761-764. https://doi.org/10.1016/j.sab.2011.09.002
  15. Y. Gong, D. Choi, B.-Y. Han, J. Yoo, S.-H. Han, Y. Lee, Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy, J. Nucl. Mater. 453 (1) (2014) 8-15. https://doi.org/10.1016/j.jnucmat.2014.06.022
  16. A.J. Effenberger, Methods for Measurement of Heterogeneous Materials with Laser-Induced Breakdwon Spectroscopy (LIBS), University of California, San Diego, 2009.
  17. J.A.S. Nicholas A. Smith, Mark A. Williamson, Application of Laser-Induced Breakdown Spectroscopy to Electrochemical Process Monitoring of Molten Chloride Salts, presented at: International Atomic Energy Agency (IAEA): Linking Strategy, Vienna, Austria.
  18. D.-H. Lee, S.-C. Han, T.-H. Kim, J.-I. Yun, Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy, Anal. Chem. 83 (24) (2011) 9456-9461. https://doi.org/10.1021/ac2021689
  19. L. Ripoll, M. Hidalgo, Electrospray deposition followed by laser-induced breakdown spectroscopy (ESD-LIBS): a new method for trace elemental analysis of aqueous samples, J. Anal. Atom. Spectro. 34 (10) (2019) 2016-2026. https://doi.org/10.1039/C9JA00145J
  20. H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, M. Sabsabi, Improving laserinduced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF), J. Anal. Atom. Spectro. 24 (10) (2009) 1421-1428. https://doi.org/10.1039/b909485g
  21. A.M. Popov, A.N. Drozdova, S.M. Zaytsev, D.I. Biryukova, N.B. Zorov, T.A. Labutin, Rapid, direct determination of strontium in natural waters by laser-induced breakdown spectroscopy, J. Anal. Atom. Spectro. 31 (5) (2016) 1123-1130. https://doi.org/10.1039/C5JA00468C
  22. H. Andrews, S. Phongikaroon, Electrochemical and laser-induced breakdown spectroscopy signal fusion for detection of UCl3-GdCl3-MgCl2 in LiCl-KCl molten salt, Nucl. Technol. 207 (4) (2021) 617-626. https://doi.org/10.1080/00295450.2020.1776538
  23. H. Andrews, S. Phongikaroon, Development of an experimental routine for electrochemical and laser-induced breakdown spectroscopy composition measurements of SmCl3 in LiCl-KCl eutectic salt systems, Nucl. Technol. 205 (7) (2019) 891-904. https://doi.org/10.1080/00295450.2018.1551988
  24. D. Hudry, I. Bardez, A. Rakhmatullin, C. Bessada, F. Bart, S. Jobic, P. Deniard, Synthesis of rare earth phosphates in molten LiCleKCl eutectic: application to preliminary treatment of chlorinated waste streams containing fission products, J. Nucl. Mater. 381 (3) (2008) 284-289. https://doi.org/10.1016/j.jnucmat.2008.09.005
  25. Y.T. Jee, M. Park, S. Cho, J.-I. Yun, Selective morphological analysis of cerium metal in electrodeposit recovered from molten LiCl-KCl eutectic by radiography and computed tomography, Sci. Rep. 9 (1) (2019) 1346.
  26. J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. Mullins, Electrode degradation in lithium-ion batteries, ACS Nano 14 (2) (2020) 1243-1295. https://doi.org/10.1021/acsnano.9b04365
  27. H.-W. Ha, N.J. Yun, K. Kim, Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries, Electrochim. Acta 52 (9) (2007) 3236-3241. https://doi.org/10.1016/j.electacta.2006.09.066
  28. B. Chide, S. Maurice, N. Murdoch, J. Lasue, B. Bousquet, X. Jacob, A. Cousin, O. Forni, O. Gasnault, P.-Y. Meslin, J.-F. Fronton, M. Bassas-Portus, A. Cadu, A. Sournac, D. Mimoun, R.C. Wiens, Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology, Spectrochim. Acta B Atom Spectrosc. 153 (2019) 50-60. https://doi.org/10.1016/j.sab.2019.01.008
  29. B. Chide, S. Maurice, A. Cousin, B. Bousquet, D. Mimoun, O. Beyssac, P.- Y. Meslin, R.C. Wiens, Recording laser-induced sparks on Mars with the SuperCam microphone, Spectrochim. Acta B Atom Spectrosc. 174 (2020), 106000.
  30. N. Murdoch, B. Chide, J. Lasue, A. Cadu, A. Sournac, M. Bassas-Portus, X. Jacob, J. Merrison, J.J. Iversen, C. Moretto, C. Velasco, L. Pares, A. Hynes, V. Godiver, R.D. Lorenz, P. Cais, P. Bernadi, S. Maurice, R.C. Wiens, D. Mimoun, Laserinduced breakdown spectroscopy acoustic testing of the Mars 2020 microphone, Planet. Space Sci. 165 (2019) 260-271. https://doi.org/10.1016/j.pss.2018.09.009
  31. P.D. Barnett, N. Lamsal, S.M. Angel, Standoff laser-induced breakdown spectroscopy (LIBS) using a miniature wide field of view spatial heterodyne spectrometer with sub-microsteradian collection optics, Appl. Spectrosc. 71 (4) (2017) 583-590. https://doi.org/10.1177/0003702816687569
  32. C. Chal EArd, P. Mauchien, N. Andre, J. Uebbing, J.L. Lacour, C. Geertsen, Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry, J. Anal. Atom. Spectro. 12 (2) (1997) 183-188. https://doi.org/10.1039/A604456E
  33. V. Lednev, S.M. Pershin, A.F. Bunkin, Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam, J. Anal. Atom. Spectro. 25 (11) (2010) 1745-1757. https://doi.org/10.1039/c0ja00017e
  34. J.-M. Reess, M. Bonafous, L. Lapauw, O. Humeau, T. Fouchet, P. Bernardi, P. Cais, M. Deleuze, O. Forni, S. Maurice, S. Robinson, R. Wiens, The SuperCam Infrared Instrument on the NASA MARS2020 Mission: Performance and Qualification Results, SPIE2019.
  35. R. Hai, Z. He, X. Yu, L. Sun, D. Wu, H. Ding, Comparative study on selfabsorption of laser-induced tungsten plasma in air and in argon, Opt Express 27 (3) (2019) 2509-2520. https://doi.org/10.1364/OE.27.002509
  36. A. Hrdlicka, L. Zaoralkov a, M. Galiov a, T. Ctvrtnickova, V. Kanicky, V. Otruba, K. Novotny, P. Krasensky, J. Kaiser, R. Malina, K. Palenikov a, Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laserinduced breakdown spectroscopy (LIBS) of glazed wall tiles, Spectrochim. Acta B Atom Spectrosc. 64 (1) (2009) 74-78. https://doi.org/10.1016/j.sab.2008.10.043
  37. S. Maji, S. Kumar, K. Sundararajan, K. Sankaran, Feasibility study for quantification of lanthanides in LiFeKCl salt by laser induced breakdown spectroscopy, Int. J. Deal. Aspects Appl. Nuclear Chem. 314 (2) (2017) 1279-1285.
  38. D. Menut, P. Fichet, J.-L. Lacour, A. Rivoallan, P. Mauchien, Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples, Appl. Opt. 42 (30) (2003) 6063-6071. https://doi.org/10.1364/AO.42.006063
  39. K.R. Campbell, E.J. Judge, J.E. Barefield, J.P. Colgan, D.P. Kilcrease, K.R. Czerwinski, S.M. Clegg, Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: main oxide phase, Spectrochim. Acta B Atom Spectrosc. 133 (2017) 26-33. https://doi.org/10.1016/j.sab.2017.04.006
  40. M. Singh, A. Sarkar, J. Banerjee, R.K. Bhagat, Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 132 (2017) 1-7. https://doi.org/10.1016/j.sab.2017.03.012
  41. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy: Cremers/Handbook of Laser-Induced Breakdown Spectroscopy, 2006.
  42. I. Gaona, J. Serrano, J. Moros, J.J. Laserna, Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance, Spectrochim. Acta B Atom Spectrosc. 96 (2014) 12-20. https://doi.org/10.1016/j.sab.2014.04.003
  43. M.L. Najarian, R.C. Chinni, Temperature and electron density determination on laser-induced breakdown spectroscopy (LIBS) plasmas: a physical chemistry experiment, J. Chem. Educ. 90 (2) (2013) 244-247. https://doi.org/10.1021/ed3003385
  44. A. Kramida, Yu Ralchenko, J. Reader, N.I.S.T. Asd Team, NIST Atomic Spectra Database, National Institute of Standards and Technology, Gaithersburg, 2020. Available:2020, version 5.8. https://physics.nist.gov/asd [Wed Oct 27 2021].
  45. Appendix IV - Stark broadening parametersz zsee [356]. And profilesx xsee [112]. For isolated neutral atom lines, in: H.R. Griem (Ed.), Pure and Applied Physics, Elsevier 1974, pp. 320-364.