DOI QR코드

DOI QR Code

Impact of gamma radiation on 8051 microcontroller performance

  • Charu Sharma (Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute) ;
  • Puspalata Rajesh (Water and Steam Chemistry Division, BARC Facilities) ;
  • R.P. Behera (Real Time System Division, Indira Gandhi Centre for Atomic Research) ;
  • S. Amirthapandian (Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute)
  • Received : 2022.03.01
  • Accepted : 2022.08.21
  • Published : 2022.12.25

Abstract

Studying the effects of gamma radiation on the instrumentation and control (I&C) system of a nuclear power plant is critical to the successful and reliable operation of the plant. In the accidental scenario, the adverse environment of ionizing radiation affects the performance of the I&C system and it leads to inaccurate and incomprehensible results. This paper reports the effects of gamma radiation on the AT89C51RD2, a commercial-off-the-shelf 8-bit high-performance flash microcontroller. The microcontroller, selected for the device under test for this study is used in the remote terminal unit for a nuclear power plant. The custom circuits were made to test the microcontroller under different gamma doses using a 60Co gamma source in both ex-situ and in-situ modes. The device was exposed to a maximum dose of 1.5 kGy. Under this hostile environment, the performance of the microcontroller was studied in terms of device current and voltage changes. It was observed that the microcontroller device can operate up to a total absorbed dose of approximately 0.6 kGy without any failure or degradation in its performance.

Keywords

Acknowledgement

One of the authors (Charu Sharma) is grateful to the Department of Atomic Energy (DAE), India for providing financial support in the form of a fellowship. The author would also like to acknowledge the support of staff members of RTSD/IGCAR and WSCD/BARCF during the course of the experiment.

References

  1. Q. Huang, J. Jiang, An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools, Prog. Nucl. Energy 114 (2019) 105-120, https://doi.org/10.1016/j.pnucene.2019.02.008.
  2. A.H. Zakaria, Y.M. Mustafah, J. Abdullah, N. Khair, H. Ithnin, Impact of cobalt60 gamma radiation source on electronic devices using Geant4, Procedia Comput. Sci. 105 (2017) 40-45, https://doi.org/10.1016/j.procs.2017.01.187.
  3. Steven Starr, Costs and consequences of the Fukushima Daiichi disaster, Physicians Soc. Responsib. (2015) 2-7.
  4. S. Takahashi, Radiation monitoring and dose estimation of the Fukushima nuclear accident, Radiat. Monit. Dose Estim. Fukushima Nucl. Accid. (2014), https://doi.org/10.1007/978-4-431-54583-5, 1-221.
  5. R. Eisler, The Fukushima 2011 Disaster, CRC Press, New York, United States, 2013, https://doi.org/10.1201/b14598.
  6. V. Saenko, V. Ivanov, A. Tsyb, T. Bogdanova, M. Tronko, Y. Demidchik, S. Yamashita, The Chernobyl accident and its consequences, Clin. Oncol. 23 (2011) 234-243, https://doi.org/10.1016/j.clon.2011.01.502.
  7. J.R. Schwank, M.R. Shaneyfelt, J.A. Felix, P.E. Dodd, J. Baggio, V. Ferlet-Cavrois, P. Paillet, G.L. Hash, R.S. Flores, L.W. Massengill, E. Blackmore, Effects of total dose irradiation on single-event upset hardness, IEEE Trans. Nucl. Sci. 53 (2006) 1772-1778, https://doi.org/10.1109/TNS.2006.877896.
  8. F.G.H. Leite, R.B.B. Santos, N.E. Araujo, K.H. Cirne, N.H. Medina, V.A.P. Aguiar, R.C. Giacomini, N. Added, F. Aguirre, E.L.A. MacChione, F. Vargas, M.A.G. Da Silveira, Ionizing Radiation Effects on a COTS Low-Cost RISC Microcontroller, Proc. Eur. Conf. Radiat. Its Eff. Components Syst. RADECS. 2016-Septe, 2017, pp. 1-4, https://doi.org/10.1109/RADECS.2016.8093215.
  9. M.A.G. Silveira, M.A.A. Melo, V.A.P. Aguiar, A. Rallo, R.B.B. Santos, N.H. Medina, N. Added, L.E. Seixas, F.G. Leite, F.G. Cunha, K.H. Cirne, R. Giacomini, J.A. de OLIVEIRA, A commercial off-the-shelf pMOS transistor as X-ray and heavy ion detector, J. Phys. Conf. Ser. 630 (2015), https://doi.org/10.1088/1742-6596/630/1/012012.
  10. T. Fried, A. Di Buono, D. Cheneler, N. Cockbain, J.M. Dodds, P.R. Green, B. Lennox, C.J. Taylor, S.D. Monk, Radiation testing of low cost, commercial off the shelf microcontroller board, Nucl. Eng. Technol. 53 (2021) 3335-3343, https://doi.org/10.1016/j.net.2021.05.005.
  11. J.A. Felix, M.R. Shaneyfelt, J.R. Schwank, S.M. Dalton, P.E. Dodd, J.B. Witcher, Enhanced degradation in power MOSFET devices due to heavy ion irradiation, in: IEEE Trans. Nucl. Sci, 2007, pp. 2181-2189, https://doi.org/10.1109/TNS.2007.910873.
  12. J.R. Srour, Basic Mechanisms of Radiation Effects on Electronic Materials, Devices, and Integrated Circuits, 1982. United States, https://www.osti.gov/biblio/5214750.
  13. J.S. Browning, M.P. Connors, C.L. Freshman, G.A. Finney, Total dose characterization of a CMOS technology at high dose rates and temperatures, IEEE Trans. Nucl. Sci. 35 (1988) 1557-1562, https://doi.org/10.1109/23.25497.
  14. D.M. Fleetwood, L.C. Riewe, J.R. Schwank Sandia, Radiation effects at low electric fields in thermal, simox, and bipolar-base oxides, IEEE Trans. Nucl. Sci. 43 (1996) 2537-2546, https://doi.org/10.1109/23.556834.
  15. B. Djezzar, A. Smatti, A. Amrouche, M. Kechouane, Channel-length impact on radiation-induced threshold-voltage shift in N-MOSFET's devices at low gamma rays radiation doses, IEEE Trans. Nucl. Sci. 47 (2000) 1872-1878, https://doi.org/10.1109/23.914462.
  16. M.R. Shaneyfelt, D.M. Fleetwood, P.S. Winokur, J.R. Schwank, T.L. Meisenheimer, Effects of device scaling and geometry on MOS radiation hardness assurance, IEEE Trans. Nucl. Sci. 40 (1993) 1678-1685, https://doi.org/10.1109/23.273493.
  17. M. Simons, Rapid annealing in irradiated CMOS transistors, IEEE Trans. Nucl. Sci. 21 (2013) 172-178, https://doi.org/10.1109/tns.1974.6498924.
  18. B.L. Gregory, C.W. Gwyn, Radiation effects on semiconductor devices, Proc. IEEE. 62 (1974) 1264-1273, https://doi.org/10.1109/PROC.1974.9605.
  19. C.C. Foster, Total ionizing dose and displacement-damage effects in microelectronics, MRS Bull. 28 (2003) 136-140, https://doi.org/10.1557/mrs2003.42.
  20. F.X. Yu, J.R. Liu, Z.L. Huang, H. Luo, Z.M. Lu, Overview of radiation hardening techniques for IC design, Inf. Technol. J. 9 (2010) 1068-1080, https://doi.org/10.3923/itj.2010.1068.1080.
  21. G.C. Messenger, M. Ash, Single Event Phenomena, Springer US, Boston, MA, 2013, https://doi.org/10.1007/978-1-4615-6043-2_6.
  22. M.J. Rycroft, Handbook of radiation effects, J. Atmos. Terr. Phys. 57 (1995) 1672-1673, https://doi.org/10.1016/0021-9169(95)90044-6.
  23. V.S. Vavilov, N.A. Ukhin, Radiation Effects in Semiconductors and Semiconductor Devices, 1995, https://doi.org/10.1007/978-1-4684-9069-5.
  24. R.L. Radosavljevic, A.I. Vasic, Effects of radiation on solar cells as photovoltaic generators, Nucl. Technol. Radiat. Prot. 27 (2012) 28-32, https://doi.org/10.2298/NTRP1201028R.
  25. T.S. Nidhin, A. Bhattacharyya, R.P. Behera, T. Jayanthi, K. Velusamy, Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants, Nucl. Eng. Technol. 49 (2017) 1589-1599, https://doi.org/10.1016/j.net.2017.09.002.
  26. George C. Messenger, Milton S. Ash, The Effects of Radiation on Electronic Systems, 1986. https://www.osti.gov/biblio/6335243.
  27. F. Wang, V.D. Agrawal, Single event upset: an embedded tutorial, Proc. IEEE Int. Freq. Control. Symp. Expo. (2008) 429-434, https://doi.org/10.1109/VLSI.2008.28.
  28. S. Voinigescu, High-Frequency Integrated Circuits, 2013, https://doi.org/10.1017/CBO9781139021128.
  29. J. Xiaoming, M. Qiang, Q. Chao, Y. Shanchao, L. Ruibin, B. Xiaoyan, L. Yan, W. Guizhen, L. Dongsheng, C. Wei, D. Lili, Radiation effect in CMOS microprocessor exposed to intense mixed neutron and gamma radiation field, in: Proc. Eur. Conf. Radiat. Its Eff. Components Syst. RADECS, Institute of Electrical and Electronics Engineers Inc., 2013, https://doi.org/10.1109/RADECS.2013.6937406.
  30. H. Quinn, T. Fairbanks, J.L. Tripp, G. Duran, B. Lopez, Single-event effects in low-cost, low-power microprocessors, in: IEEE Radiat. Eff. Data Work, Institute of Electrical and Electronics Engineers Inc., 2014, https://doi.org/10.1109/REDW.2014.7004596.
  31. Y. Zhao, S. Yue, X. Zhao, S. Lu, Q. Bian, L. Wang, Y. Sun, Single event soft error in advanced integrated circuit, J. Semicond. 36 (2015), https://doi.org/10.1088/1674-4926/36/11/111001.
  32. H.J. Barnaby, Total-ionizing-dose effects in modern CMOS technologies, IEEE Trans. Nucl. Sci. 53 (2006) 3103-3121, https://doi.org/10.1109/TNS.2006.885952.
  33. R.C. Baumann, Soft Errors in Commercial Integrated Circuits 14 (2004) 15-25. https://doi.org/10.1142/9789812794703_0002.
  34. M.A.G. Da Silveira, R.B.B. Santos, F. Leite, F. Cunha, K.H. Cirne, N.H. Medina, N. Added, V.A.P. Aguiar, Radiation effect mechanisms in electronic devices, in: X Lat. Am. Symp. Nucl. Phys. Appl., Uruguay, 2013, https://doi.org/10.22323/1.194.0077.
  35. F.Q. Qi, X.D. Jing, S.Q. Zhao, Design of stepping motor control system based on AT89C51 microcontroller, Procedia Eng. 15 (2011) 2276-2280, https://doi.org/10.1016/j.proeng.2011.08.426.
  36. J. Tang, E. Zheng, The research on software of the temperature control of motor speed system, Appl. Mech. Mater. 29-32 (2010) 349-353, https://doi.org/10.4028/www.scientific.net/AMM.29-32.349.
  37. J. Lin, Z. Tong, Granary temperature and humidity detection system based on MCU, Adv. Mater. Res. 605-607 (2013) 941-944, https://doi.org/10.4028/www.scientific.net/AMR.605-607.941.
  38. H. Zhu, L. Bai, Temperature monitoring system based on AT89C51 microcontroller, in: 2009 IEEE Int. Symp. IT Med. Educ, 2009, pp. 316-320, https://doi.org/10.1109/ITIME.2009.5236408.
  39. L. Zhang, Intelligent signal generator based AT89C51 microcontroller, Appl. Mech. Mater. 152-154 (2012) 1650-1657, https://doi.org/10.4028/www.scientific.net/AMM.152-154.1650.
  40. S. Ding, The liquid flow measuring device based on AT89C51 microcontroller, J. Comput. Theor. Nanosci. 11 (4) (2012) 638-641, https://doi.org/10.1166/asl.2012.2939.
  41. W. Zhong, Y. Wang, Design of automobile intelligence security control system based on microcontroller AT89C51, in: D. Jin, S. Lin (Eds.), Adv. Electron. Commer. Web Appl. Commun, vol. 1, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 299-303, https://doi.org/10.1007/978-3-642-28655-1_47.
  42. A. Kaur, G. Chhetri, N. Singh, Asif, S. Kumar, H.K. Channi, Designing of Solar Tracking System Using AT89C51 Microcontroller, 2017, https://doi.org/10.13140/RG.2.2.20691.27685.
  43. R.P. Behera, N. Murali, S.A.V. Satya Murty, Development of tele-alarm and fire protection system using remote terminal unit for nuclear power plant, in: 2015 Int. Conf. Robot. Autom. Control Embed. Syst, 2015, pp. 1-5, https://doi.org/10.1109/RACE.2015.7097289.
  44. C. Sharma, R.P. Behera, M. Sakthivel, B.K. Panigrahi, T. Jayanthi, Characterization of microcontroller under gamma radiation environment, in: Lect. Notes Electr. Eng, Springer Science and Business Media Deutschland GmbH, 2021, pp. 2001-2008, https://doi.org/10.1007/978-981-15-8221-9_185.
  45. J.W. T.S, R.J. Woods, An introduction to radiation chemistry, Int. J. Radiat. Biol. 30 (1976), https://doi.org/10.1080/09553007614551181, 399-399.
  46. Atmel, 8-bit Flash Microcontroller - AT89C51RD2, Datasheet. (n.d.). https://www.microchip.com/ (accessed July 7, 2022).
  47. I. Fetahovic, M. Pejovic, M. Vujisic, Radiation damage in electronic memory devices, 2013, Int. J. Photoenergy. (2013), https://doi.org/10.1155/2013/170269.
  48. A. Meulenberg, H.L.A. Hung, K.E. Peterson, W.T. Anderson, Total dose and transient radiation effects on GaAs MMIC's, IEEE Trans. Electron. Devices. 35 (1988) 2125-2132, https://doi.org/10.1109/16.8786.
  49. T.F. Miyahira, B.G. Rax, A.H. Johnston, Total dose degradation of low-dropout voltage regulators, in: IEEE Radiat. Eff. Data Work. 2005, 2005, pp. 127-131, https://doi.org/10.1109/REDW.2005.1532678.
  50. J.R. Srour, J.M. McGarrity, Radiation effects on microelectronics in space, Proc. IEEE. 76 (1988) 1443-1469, https://doi.org/10.1109/5.90114.
  51. P.C. Adell, L.Z. Scheick, Radiation effects in power systems: a review, IEEE Trans. Nucl. Sci. 60 (2013) 1929-1952, https://doi.org/10.1109/TNS.2013.2262235.
  52. T.R. Oldham, F.B. McLean, Total ionizing dose effects in MOS oxides and devices, IEEE Trans. Nucl. Sci. 50 (2003) 483-499, https://doi.org/10.1109/TNS.2003.812927.
  53. S.M. Guertin, M. Amrbar, S. Vartanian, Radiation test results for common CubeSat microcontrollers and microprocessors, 2015-Novem, IEEE Radiat. Eff. Data Work. (2015), https://doi.org/10.1109/REDW.2015.7336730.