Acknowledgement
One of the authors (Charu Sharma) is grateful to the Department of Atomic Energy (DAE), India for providing financial support in the form of a fellowship. The author would also like to acknowledge the support of staff members of RTSD/IGCAR and WSCD/BARCF during the course of the experiment.
References
- Q. Huang, J. Jiang, An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools, Prog. Nucl. Energy 114 (2019) 105-120, https://doi.org/10.1016/j.pnucene.2019.02.008.
- A.H. Zakaria, Y.M. Mustafah, J. Abdullah, N. Khair, H. Ithnin, Impact of cobalt60 gamma radiation source on electronic devices using Geant4, Procedia Comput. Sci. 105 (2017) 40-45, https://doi.org/10.1016/j.procs.2017.01.187.
- Steven Starr, Costs and consequences of the Fukushima Daiichi disaster, Physicians Soc. Responsib. (2015) 2-7.
- S. Takahashi, Radiation monitoring and dose estimation of the Fukushima nuclear accident, Radiat. Monit. Dose Estim. Fukushima Nucl. Accid. (2014), https://doi.org/10.1007/978-4-431-54583-5, 1-221.
- R. Eisler, The Fukushima 2011 Disaster, CRC Press, New York, United States, 2013, https://doi.org/10.1201/b14598.
- V. Saenko, V. Ivanov, A. Tsyb, T. Bogdanova, M. Tronko, Y. Demidchik, S. Yamashita, The Chernobyl accident and its consequences, Clin. Oncol. 23 (2011) 234-243, https://doi.org/10.1016/j.clon.2011.01.502.
- J.R. Schwank, M.R. Shaneyfelt, J.A. Felix, P.E. Dodd, J. Baggio, V. Ferlet-Cavrois, P. Paillet, G.L. Hash, R.S. Flores, L.W. Massengill, E. Blackmore, Effects of total dose irradiation on single-event upset hardness, IEEE Trans. Nucl. Sci. 53 (2006) 1772-1778, https://doi.org/10.1109/TNS.2006.877896.
- F.G.H. Leite, R.B.B. Santos, N.E. Araujo, K.H. Cirne, N.H. Medina, V.A.P. Aguiar, R.C. Giacomini, N. Added, F. Aguirre, E.L.A. MacChione, F. Vargas, M.A.G. Da Silveira, Ionizing Radiation Effects on a COTS Low-Cost RISC Microcontroller, Proc. Eur. Conf. Radiat. Its Eff. Components Syst. RADECS. 2016-Septe, 2017, pp. 1-4, https://doi.org/10.1109/RADECS.2016.8093215.
- M.A.G. Silveira, M.A.A. Melo, V.A.P. Aguiar, A. Rallo, R.B.B. Santos, N.H. Medina, N. Added, L.E. Seixas, F.G. Leite, F.G. Cunha, K.H. Cirne, R. Giacomini, J.A. de OLIVEIRA, A commercial off-the-shelf pMOS transistor as X-ray and heavy ion detector, J. Phys. Conf. Ser. 630 (2015), https://doi.org/10.1088/1742-6596/630/1/012012.
- T. Fried, A. Di Buono, D. Cheneler, N. Cockbain, J.M. Dodds, P.R. Green, B. Lennox, C.J. Taylor, S.D. Monk, Radiation testing of low cost, commercial off the shelf microcontroller board, Nucl. Eng. Technol. 53 (2021) 3335-3343, https://doi.org/10.1016/j.net.2021.05.005.
- J.A. Felix, M.R. Shaneyfelt, J.R. Schwank, S.M. Dalton, P.E. Dodd, J.B. Witcher, Enhanced degradation in power MOSFET devices due to heavy ion irradiation, in: IEEE Trans. Nucl. Sci, 2007, pp. 2181-2189, https://doi.org/10.1109/TNS.2007.910873.
- J.R. Srour, Basic Mechanisms of Radiation Effects on Electronic Materials, Devices, and Integrated Circuits, 1982. United States, https://www.osti.gov/biblio/5214750.
- J.S. Browning, M.P. Connors, C.L. Freshman, G.A. Finney, Total dose characterization of a CMOS technology at high dose rates and temperatures, IEEE Trans. Nucl. Sci. 35 (1988) 1557-1562, https://doi.org/10.1109/23.25497.
- D.M. Fleetwood, L.C. Riewe, J.R. Schwank Sandia, Radiation effects at low electric fields in thermal, simox, and bipolar-base oxides, IEEE Trans. Nucl. Sci. 43 (1996) 2537-2546, https://doi.org/10.1109/23.556834.
- B. Djezzar, A. Smatti, A. Amrouche, M. Kechouane, Channel-length impact on radiation-induced threshold-voltage shift in N-MOSFET's devices at low gamma rays radiation doses, IEEE Trans. Nucl. Sci. 47 (2000) 1872-1878, https://doi.org/10.1109/23.914462.
- M.R. Shaneyfelt, D.M. Fleetwood, P.S. Winokur, J.R. Schwank, T.L. Meisenheimer, Effects of device scaling and geometry on MOS radiation hardness assurance, IEEE Trans. Nucl. Sci. 40 (1993) 1678-1685, https://doi.org/10.1109/23.273493.
- M. Simons, Rapid annealing in irradiated CMOS transistors, IEEE Trans. Nucl. Sci. 21 (2013) 172-178, https://doi.org/10.1109/tns.1974.6498924.
- B.L. Gregory, C.W. Gwyn, Radiation effects on semiconductor devices, Proc. IEEE. 62 (1974) 1264-1273, https://doi.org/10.1109/PROC.1974.9605.
- C.C. Foster, Total ionizing dose and displacement-damage effects in microelectronics, MRS Bull. 28 (2003) 136-140, https://doi.org/10.1557/mrs2003.42.
- F.X. Yu, J.R. Liu, Z.L. Huang, H. Luo, Z.M. Lu, Overview of radiation hardening techniques for IC design, Inf. Technol. J. 9 (2010) 1068-1080, https://doi.org/10.3923/itj.2010.1068.1080.
- G.C. Messenger, M. Ash, Single Event Phenomena, Springer US, Boston, MA, 2013, https://doi.org/10.1007/978-1-4615-6043-2_6.
- M.J. Rycroft, Handbook of radiation effects, J. Atmos. Terr. Phys. 57 (1995) 1672-1673, https://doi.org/10.1016/0021-9169(95)90044-6.
- V.S. Vavilov, N.A. Ukhin, Radiation Effects in Semiconductors and Semiconductor Devices, 1995, https://doi.org/10.1007/978-1-4684-9069-5.
- R.L. Radosavljevic, A.I. Vasic, Effects of radiation on solar cells as photovoltaic generators, Nucl. Technol. Radiat. Prot. 27 (2012) 28-32, https://doi.org/10.2298/NTRP1201028R.
- T.S. Nidhin, A. Bhattacharyya, R.P. Behera, T. Jayanthi, K. Velusamy, Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants, Nucl. Eng. Technol. 49 (2017) 1589-1599, https://doi.org/10.1016/j.net.2017.09.002.
- George C. Messenger, Milton S. Ash, The Effects of Radiation on Electronic Systems, 1986. https://www.osti.gov/biblio/6335243.
- F. Wang, V.D. Agrawal, Single event upset: an embedded tutorial, Proc. IEEE Int. Freq. Control. Symp. Expo. (2008) 429-434, https://doi.org/10.1109/VLSI.2008.28.
- S. Voinigescu, High-Frequency Integrated Circuits, 2013, https://doi.org/10.1017/CBO9781139021128.
- J. Xiaoming, M. Qiang, Q. Chao, Y. Shanchao, L. Ruibin, B. Xiaoyan, L. Yan, W. Guizhen, L. Dongsheng, C. Wei, D. Lili, Radiation effect in CMOS microprocessor exposed to intense mixed neutron and gamma radiation field, in: Proc. Eur. Conf. Radiat. Its Eff. Components Syst. RADECS, Institute of Electrical and Electronics Engineers Inc., 2013, https://doi.org/10.1109/RADECS.2013.6937406.
- H. Quinn, T. Fairbanks, J.L. Tripp, G. Duran, B. Lopez, Single-event effects in low-cost, low-power microprocessors, in: IEEE Radiat. Eff. Data Work, Institute of Electrical and Electronics Engineers Inc., 2014, https://doi.org/10.1109/REDW.2014.7004596.
- Y. Zhao, S. Yue, X. Zhao, S. Lu, Q. Bian, L. Wang, Y. Sun, Single event soft error in advanced integrated circuit, J. Semicond. 36 (2015), https://doi.org/10.1088/1674-4926/36/11/111001.
- H.J. Barnaby, Total-ionizing-dose effects in modern CMOS technologies, IEEE Trans. Nucl. Sci. 53 (2006) 3103-3121, https://doi.org/10.1109/TNS.2006.885952.
- R.C. Baumann, Soft Errors in Commercial Integrated Circuits 14 (2004) 15-25. https://doi.org/10.1142/9789812794703_0002.
- M.A.G. Da Silveira, R.B.B. Santos, F. Leite, F. Cunha, K.H. Cirne, N.H. Medina, N. Added, V.A.P. Aguiar, Radiation effect mechanisms in electronic devices, in: X Lat. Am. Symp. Nucl. Phys. Appl., Uruguay, 2013, https://doi.org/10.22323/1.194.0077.
- F.Q. Qi, X.D. Jing, S.Q. Zhao, Design of stepping motor control system based on AT89C51 microcontroller, Procedia Eng. 15 (2011) 2276-2280, https://doi.org/10.1016/j.proeng.2011.08.426.
- J. Tang, E. Zheng, The research on software of the temperature control of motor speed system, Appl. Mech. Mater. 29-32 (2010) 349-353, https://doi.org/10.4028/www.scientific.net/AMM.29-32.349.
- J. Lin, Z. Tong, Granary temperature and humidity detection system based on MCU, Adv. Mater. Res. 605-607 (2013) 941-944, https://doi.org/10.4028/www.scientific.net/AMR.605-607.941.
- H. Zhu, L. Bai, Temperature monitoring system based on AT89C51 microcontroller, in: 2009 IEEE Int. Symp. IT Med. Educ, 2009, pp. 316-320, https://doi.org/10.1109/ITIME.2009.5236408.
- L. Zhang, Intelligent signal generator based AT89C51 microcontroller, Appl. Mech. Mater. 152-154 (2012) 1650-1657, https://doi.org/10.4028/www.scientific.net/AMM.152-154.1650.
- S. Ding, The liquid flow measuring device based on AT89C51 microcontroller, J. Comput. Theor. Nanosci. 11 (4) (2012) 638-641, https://doi.org/10.1166/asl.2012.2939.
- W. Zhong, Y. Wang, Design of automobile intelligence security control system based on microcontroller AT89C51, in: D. Jin, S. Lin (Eds.), Adv. Electron. Commer. Web Appl. Commun, vol. 1, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 299-303, https://doi.org/10.1007/978-3-642-28655-1_47.
- A. Kaur, G. Chhetri, N. Singh, Asif, S. Kumar, H.K. Channi, Designing of Solar Tracking System Using AT89C51 Microcontroller, 2017, https://doi.org/10.13140/RG.2.2.20691.27685.
- R.P. Behera, N. Murali, S.A.V. Satya Murty, Development of tele-alarm and fire protection system using remote terminal unit for nuclear power plant, in: 2015 Int. Conf. Robot. Autom. Control Embed. Syst, 2015, pp. 1-5, https://doi.org/10.1109/RACE.2015.7097289.
- C. Sharma, R.P. Behera, M. Sakthivel, B.K. Panigrahi, T. Jayanthi, Characterization of microcontroller under gamma radiation environment, in: Lect. Notes Electr. Eng, Springer Science and Business Media Deutschland GmbH, 2021, pp. 2001-2008, https://doi.org/10.1007/978-981-15-8221-9_185.
- J.W. T.S, R.J. Woods, An introduction to radiation chemistry, Int. J. Radiat. Biol. 30 (1976), https://doi.org/10.1080/09553007614551181, 399-399.
- Atmel, 8-bit Flash Microcontroller - AT89C51RD2, Datasheet. (n.d.). https://www.microchip.com/ (accessed July 7, 2022).
- I. Fetahovic, M. Pejovic, M. Vujisic, Radiation damage in electronic memory devices, 2013, Int. J. Photoenergy. (2013), https://doi.org/10.1155/2013/170269.
- A. Meulenberg, H.L.A. Hung, K.E. Peterson, W.T. Anderson, Total dose and transient radiation effects on GaAs MMIC's, IEEE Trans. Electron. Devices. 35 (1988) 2125-2132, https://doi.org/10.1109/16.8786.
- T.F. Miyahira, B.G. Rax, A.H. Johnston, Total dose degradation of low-dropout voltage regulators, in: IEEE Radiat. Eff. Data Work. 2005, 2005, pp. 127-131, https://doi.org/10.1109/REDW.2005.1532678.
- J.R. Srour, J.M. McGarrity, Radiation effects on microelectronics in space, Proc. IEEE. 76 (1988) 1443-1469, https://doi.org/10.1109/5.90114.
- P.C. Adell, L.Z. Scheick, Radiation effects in power systems: a review, IEEE Trans. Nucl. Sci. 60 (2013) 1929-1952, https://doi.org/10.1109/TNS.2013.2262235.
- T.R. Oldham, F.B. McLean, Total ionizing dose effects in MOS oxides and devices, IEEE Trans. Nucl. Sci. 50 (2003) 483-499, https://doi.org/10.1109/TNS.2003.812927.
- S.M. Guertin, M. Amrbar, S. Vartanian, Radiation test results for common CubeSat microcontrollers and microprocessors, 2015-Novem, IEEE Radiat. Eff. Data Work. (2015), https://doi.org/10.1109/REDW.2015.7336730.