Browse > Article
http://dx.doi.org/10.1016/j.net.2022.07.014

In-situ measurement of Ce concentration in high-temperature molten salts using acoustic-assisted laser-induced breakdown spectroscopy with gas protective layer  

Yunu Lee (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
Seokjoo Yoon (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
Nayoung Kim (Department of Nuclear Engineering, Seoul National University)
Dokyu Kang (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
Hyeongbin Kim (Department of Nuclear Engineering, Seoul National University)
Wonseok Yang (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
Milos Burger (Department of Nuclear Engineering and Radiological Sciences, University of Michigan)
Igor Jovanovic (Department of Nuclear Engineering and Radiological Sciences, University of Michigan)
Sungyeol Choi (Department of Nuclear Engineering, Seoul National University)
Publication Information
Nuclear Engineering and Technology / v.54, no.12, 2022 , pp. 4431-4440 More about this Journal
Abstract
An advanced nuclear reactor based on molten salts including a molten salt reactor and pyroprocessing needs a sensitive monitoring system suitable for operation in harsh environments with limited access. Multi-element detection is challenging with the conventional technologies that are compatible with the in-situ operation; hence laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential alternative. However, limited precision is a chronic problem with LIBS. We increased the precision of LIBS under high temperature by protecting optics using a gas protective layer and correcting for shotto-shot variance and lens-to-sample distance using a laser-induced acoustic signal. This study investigates cerium as a surrogate for uranium and corrosion products for simulating corrosive environments in LiCl-KCl. While the un-corrected limit of detection (LOD) range is 425-513 ppm, the acoustic-corrected LOD range is 360-397 ppm. The typical cerium concentrations in pyroprocessing are about two orders of magnitude higher than the LOD found in this study. A LIBS monitoring system that adopts these methods could have a significant impact on the ability to monitor and provide early detection of the transient behavior of salt composition in advanced molten salt-based nuclear reactors.
Keywords
LIBS; Ce; In-situ monitoring; Molten salt reactor; Pyroprocessing; Acoustic; Gas protective layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Murdoch, B. Chide, J. Lasue, A. Cadu, A. Sournac, M. Bassas-Portus, X. Jacob, J. Merrison, J.J. Iversen, C. Moretto, C. Velasco, L. Pares, A. Hynes, V. Godiver, R.D. Lorenz, P. Cais, P. Bernadi, S. Maurice, R.C. Wiens, D. Mimoun, Laserinduced breakdown spectroscopy acoustic testing of the Mars 2020 microphone, Planet. Space Sci. 165 (2019) 260-271.   DOI
2 P.D. Barnett, N. Lamsal, S.M. Angel, Standoff laser-induced breakdown spectroscopy (LIBS) using a miniature wide field of view spatial heterodyne spectrometer with sub-microsteradian collection optics, Appl. Spectrosc. 71 (4) (2017) 583-590.   DOI
3 C. Chal EArd, P. Mauchien, N. Andre, J. Uebbing, J.L. Lacour, C. Geertsen, Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry, J. Anal. Atom. Spectro. 12 (2) (1997) 183-188.   DOI
4 V. Lednev, S.M. Pershin, A.F. Bunkin, Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam, J. Anal. Atom. Spectro. 25 (11) (2010) 1745-1757.   DOI
5 J.-M. Reess, M. Bonafous, L. Lapauw, O. Humeau, T. Fouchet, P. Bernardi, P. Cais, M. Deleuze, O. Forni, S. Maurice, S. Robinson, R. Wiens, The SuperCam Infrared Instrument on the NASA MARS2020 Mission: Performance and Qualification Results, SPIE2019.
6 R. Hai, Z. He, X. Yu, L. Sun, D. Wu, H. Ding, Comparative study on selfabsorption of laser-induced tungsten plasma in air and in argon, Opt Express 27 (3) (2019) 2509-2520.   DOI
7 A. Hrdlicka, L. Zaoralkov a, M. Galiov a, T. Ctvrtnickova, V. Kanicky, V. Otruba, K. Novotny, P. Krasensky, J. Kaiser, R. Malina, K. Palenikov a, Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laserinduced breakdown spectroscopy (LIBS) of glazed wall tiles, Spectrochim. Acta B Atom Spectrosc. 64 (1) (2009) 74-78.   DOI
8 S. Maji, S. Kumar, K. Sundararajan, K. Sankaran, Feasibility study for quantification of lanthanides in LiFeKCl salt by laser induced breakdown spectroscopy, Int. J. Deal. Aspects Appl. Nuclear Chem. 314 (2) (2017) 1279-1285.
9 D. Menut, P. Fichet, J.-L. Lacour, A. Rivoallan, P. Mauchien, Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples, Appl. Opt. 42 (30) (2003) 6063-6071.   DOI
10 K.R. Campbell, E.J. Judge, J.E. Barefield, J.P. Colgan, D.P. Kilcrease, K.R. Czerwinski, S.M. Clegg, Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: main oxide phase, Spectrochim. Acta B Atom Spectrosc. 133 (2017) 26-33.   DOI
11 M. Singh, A. Sarkar, J. Banerjee, R.K. Bhagat, Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 132 (2017) 1-7.   DOI
12 D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy: Cremers/Handbook of Laser-Induced Breakdown Spectroscopy, 2006.
13 I. Gaona, J. Serrano, J. Moros, J.J. Laserna, Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance, Spectrochim. Acta B Atom Spectrosc. 96 (2014) 12-20.   DOI
14 M.L. Najarian, R.C. Chinni, Temperature and electron density determination on laser-induced breakdown spectroscopy (LIBS) plasmas: a physical chemistry experiment, J. Chem. Educ. 90 (2) (2013) 244-247.   DOI
15 Y.S. Kim, B.Y. Han, H.S. Shin, H.D. Kim, E.C. Jung, J.H. Jung, S.H. Na, Determination of uranium concentration in an ore sample using laser-induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 74-75 (2012) 190-193.   DOI
16 A. Kramida, Yu Ralchenko, J. Reader, N.I.S.T. Asd Team, NIST Atomic Spectra Database, National Institute of Standards and Technology, Gaithersburg, 2020. Available:2020, version 5.8. https://physics.nist.gov/asd [Wed Oct 27 2021].
17 Appendix IV - Stark broadening parametersz zsee [356]. And profilesx xsee [112]. For isolated neutral atom lines, in: H.R. Griem (Ed.), Pure and Applied Physics, Elsevier 1974, pp. 320-364.
18 Pacific Northwest National Laboratory Capabilities for Molten Salt Reactor Technologies, Pacific Northwest National Laboratory, U.S. Department of Energy, 2020.
19 J. Park, S. Choi, S. Sohn, I.S. Hwang, Cyclic voltammetry on Zr, Sn, Fe, Cr and Co in LiCl-KCl salts at 500℃ for electrorefining of irradiated zircaloy-4 cladding, J. Electrochem. Soc. 164 (12) (2017) D744-D751.   DOI
20 S. Yoon, S. Choi, Spectroelectrochemical behavior of Cr, Fe, Co, and Ni in LiClKCl molten salt for decontaminating radioactive metallic wastes, J. Electrochem. Soc. 168 (1) (2021), 013504.
21 C. Hanson, S. Phongikaroon, J.R. Scott, Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts, Spectrochim. Acta B Atom Spectrosc. 97 (2014) 79-85.   DOI
22 G. Hull, H. Lambert, K. Haroon, P. Coffey, T. Kerry, E.D. McNaghten, C.A. Sharrad, P. Martin, Quantitative prediction of rare earth concentrations in salt matrices using laser-induced breakdown spectroscopy for application to molten salt reactors and pyroprocessing, J. Anal. Atom. Spectro. 36 (1) (2021) 92-102.   DOI
23 A.N. Williams, S. Phongikaroon, Laser-induced breakdown spectroscopy (LIBS) in a novel molten salt aerosol system, Appl. Spectrosc. 71 (4) (2017) 744-749.   DOI
24 S. Phongikaroon, Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy, Virginia Commonwealth Univ., Richmond, VA (United States), 2016, p. 143. Medium: ED; Size.
25 A.N. Williams, K. Bryce, S. Phongikaroon, Measurement of cerium and gadolinium in solid lithium chlorideepotassium chloride salt using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 71 (10) (2017) 2302-2312.   DOI
26 A.N. Williams, S. Phongikaroon, Laser-induced breakdown spectroscopy (LIBS) measurement of uranium in molten salt, Appl. Spectrosc. 72 (7) (2018) 1029-1039.   DOI
27 A. Weisberg, R.E. Lakis, M.F. Simpson, L. Horowitz, J. Craparo, Measuring lanthanide concentrations in molten salt using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68 (9) (2014) 937-948.   DOI
28 K. Song, D. Kim, H. Cha, Y. Kim, E.C. Jung, I. Choi, H.-S. Yoo, S. Oh, Characterization of laser-induced plasma in a vacuum using laser ablation mass spectrometry and laser-induced breakdown spectrometry, Microchem. J. 76 (1) (2004) 95-103.   DOI
29 Y. Lee, J.T.M. Amphlett, H. Ju, S. Choi, Rapid identification of Sr on surfaces of metals, porous medium, transparent materials using single-shot laserinduced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 159 (2019), 105649.
30 E.C. Jung, D.H. Lee, J.I. Yun, J.G. Kim, J.W. Yeon, K. Song, Quantitative determination of uranium and europium in glass matrix by laser-induced breakdown spectroscopy, Spectrochim. Acta B Atom Spectrosc. 66 (9) (2011) 761-764.   DOI
31 D.-H. Lee, S.-C. Han, T.-H. Kim, J.-I. Yun, Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy, Anal. Chem. 83 (24) (2011) 9456-9461.   DOI
32 Y. Gong, D. Choi, B.-Y. Han, J. Yoo, S.-H. Han, Y. Lee, Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy, J. Nucl. Mater. 453 (1) (2014) 8-15.   DOI
33 A.J. Effenberger, Methods for Measurement of Heterogeneous Materials with Laser-Induced Breakdwon Spectroscopy (LIBS), University of California, San Diego, 2009.
34 J.A.S. Nicholas A. Smith, Mark A. Williamson, Application of Laser-Induced Breakdown Spectroscopy to Electrochemical Process Monitoring of Molten Chloride Salts, presented at: International Atomic Energy Agency (IAEA): Linking Strategy, Vienna, Austria.
35 L. Ripoll, M. Hidalgo, Electrospray deposition followed by laser-induced breakdown spectroscopy (ESD-LIBS): a new method for trace elemental analysis of aqueous samples, J. Anal. Atom. Spectro. 34 (10) (2019) 2016-2026.   DOI
36 H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, M. Sabsabi, Improving laserinduced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF), J. Anal. Atom. Spectro. 24 (10) (2009) 1421-1428.   DOI
37 A.M. Popov, A.N. Drozdova, S.M. Zaytsev, D.I. Biryukova, N.B. Zorov, T.A. Labutin, Rapid, direct determination of strontium in natural waters by laser-induced breakdown spectroscopy, J. Anal. Atom. Spectro. 31 (5) (2016) 1123-1130.   DOI
38 H. Andrews, S. Phongikaroon, Electrochemical and laser-induced breakdown spectroscopy signal fusion for detection of UCl3-GdCl3-MgCl2 in LiCl-KCl molten salt, Nucl. Technol. 207 (4) (2021) 617-626.   DOI
39 D. Hudry, I. Bardez, A. Rakhmatullin, C. Bessada, F. Bart, S. Jobic, P. Deniard, Synthesis of rare earth phosphates in molten LiCleKCl eutectic: application to preliminary treatment of chlorinated waste streams containing fission products, J. Nucl. Mater. 381 (3) (2008) 284-289.   DOI
40 H. Andrews, S. Phongikaroon, Development of an experimental routine for electrochemical and laser-induced breakdown spectroscopy composition measurements of SmCl3 in LiCl-KCl eutectic salt systems, Nucl. Technol. 205 (7) (2019) 891-904.   DOI
41 Y.T. Jee, M. Park, S. Cho, J.-I. Yun, Selective morphological analysis of cerium metal in electrodeposit recovered from molten LiCl-KCl eutectic by radiography and computed tomography, Sci. Rep. 9 (1) (2019) 1346.
42 J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. Mullins, Electrode degradation in lithium-ion batteries, ACS Nano 14 (2) (2020) 1243-1295.   DOI
43 H.-W. Ha, N.J. Yun, K. Kim, Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries, Electrochim. Acta 52 (9) (2007) 3236-3241.   DOI
44 B. Chide, S. Maurice, N. Murdoch, J. Lasue, B. Bousquet, X. Jacob, A. Cousin, O. Forni, O. Gasnault, P.-Y. Meslin, J.-F. Fronton, M. Bassas-Portus, A. Cadu, A. Sournac, D. Mimoun, R.C. Wiens, Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology, Spectrochim. Acta B Atom Spectrosc. 153 (2019) 50-60.   DOI
45 B. Chide, S. Maurice, A. Cousin, B. Bousquet, D. Mimoun, O. Beyssac, P.- Y. Meslin, R.C. Wiens, Recording laser-induced sparks on Mars with the SuperCam microphone, Spectrochim. Acta B Atom Spectrosc. 174 (2020), 106000.