DOI QR코드

DOI QR Code

콩 조기파종이 Isoflavone 함량 및 아미노산 조성에 미치는 영향

Effect of Early Soybean Seeding on Isoflavone Content and Amino Acid Composition

  • 김종혁 (경상국립대학교 응용생명과학부 ) ;
  • 장미하 (경상국립대학교 응용생명과학부 ) ;
  • 남주희 (경기도 농업기술원 친환경미생물연구소) ;
  • 노일래 (경상국립대학교 농학과 )
  • Jong Hyuk Kim (Department of Applied Life Science, Gyeongsang National University) ;
  • Mi Ha Jang (Department of Applied Life Science, Gyeongsang National University) ;
  • Ju Hee Nam (Environment-Friendly Microorganism Research Institute, Gyeonggi-Do Agricultural Research and Extension Service) ;
  • Il Rae Rho (Department of Agronomy, Gyeongsang National University)
  • 투고 : 2022.07.11
  • 심사 : 2022.09.06
  • 발행 : 2022.12.01

초록

콩은 단백질, 탄수화물, 지방의 주요한 공급원으로 다양한 용도로 이용되고 있다. 최근 기후온난화가 가속되는 시점에서 콩의 파종시기를 달리 하였을 때 콩 품종별 단백질, 아미노산, 항산화물질 들의 변화를 알아보고자 본 연구를 수행하였다. 조기 파종에 따른 isoflavone의 함량은 파종시기별로 차이가 없었다. 그러나 품종별로는 속이 푸른 청자 5호, 소청자, 비린내가 없는 진양콩, 나물콩인 풍산, 소원과 같은 기능성 콩에서 isoflavone의 함량이 일반 재배콩에 비해 높음을 확인할 수 있었다. 품종별 파종시기에 따른 단백질과 아미노산의 함량변화는 파종시기에 따라 큰 차이가 없었다. 그러나 전체적으로 적기파종보다 단백질과 아미노산 함량이 낮은 경향을 나타내었다. 일부 품종을 제외하고 대부분의 품종에서 조기파종의 경우 proline의 함량이 가장 높아 조기파종에 따른 스트레스가 존재함을 확인할 수 있었다.

Soybeans have various applications, and are a major source of proteins, carbohydrates, and fats. As climate warming has accelerated in recent years, this study was conducted to analyze the effect of different sowing periods on component changes in protein, amino acid, and antioxidant contents of various soybean varieties. The isoflavone content of soybeans that were sown early did not differ with the sowing period. Based on the results, only the total isoflavone content was confirmed in functional soybean cultivars such as Cheongja-5, which had blue-colored seeds; Pungsan and Sowon, which used soybean sprouts; and Jinyang, which lacked a fishy smell. There was no significant difference in the changes in protein and amino acid content in soybean cultivars with respect to the sowing time. The protein and amino acid contents in early-sown soybeans tended to be lower than that in timely sown soybeans. In most varieties, the content of proline was the highest in early-sown soybeans, confirming the presence of stress due to early sowing.

키워드

과제정보

이 논문은 농촌진흥청 공동연구사업(과제번호:PJ015705022022)의 지원을 받았으며, 이에 감사합니다.

참고문헌

  1. Board, J. E., and Q. Tan. 1995. Assimilatory capacity effects on soybean yield components and pod number. Crop Sci. 35(3) : 846-851. https://doi.org/10.2135/cropsci1995.0011183X003500030035x
  2. Boydak, E., M. Alpaslan, M. Hayta, S. Gercek, and M. Simsek. 2002. Seed composition of soybeans grown in the Harran region of Turkeyas affected by row spacing and irrigation. J. Agric. Food Chem. 50(16) : 4718-4720. https://doi.org/10.1021/jf0255331
  3. Caldwell, C. R., S. J. Britz, and R. M. Mirecki. 2005. Effect of temperature, elevated carbon, and drought during seed development on the isoflavone content ofr dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J. Agric. Food Chem. 53(4) : 1125-1129. https://doi.org/10.1021/jf0355351
  4. Constanza, S. C., M. R. Cora, J. F. Gustavo, J. M. Maria, D. Julio, and L. R. Silvia. 2011. Amino acid composition of soybean seeds as affected by climatic variables. Pesq. Agropec. Bras. 46(12) : 1579-1587. https://doi.org/10.1590/S0100-204X2011001200001
  5. Delauney, A. J. and D. P. S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4(2) : 215-223. https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  6. Eldridge, A. C. and W. F. Kwolek. 1983. Soybean isoflavones: Effect of environment and variety on composition. J. Agric. Food Chem. 31 : 394-396. https://doi.org/10.1021/jf00116a052
  7. Food and Agriculture Organization (FAO). 2002. FAOSTAT https://www.fao.org/faostat.
  8. Gibson, L. R. and R. E. Mullen. 1996. Soybean seed quality reductions by high day and night temperature. Crop Sci. 36(6) : 1615-1619 https://doi.org/10.2135/cropsci1996.0011183X003600060034x
  9. Han, T. F., J. L. Wang, Q. K. Yang, and J. Y. Gai. 1997. Effects of postflowering photoperiod on chemical composition of soybeans. Sci. Agric. Sin. 30(2) : 47-53.
  10. Heerden, P. D. R. V. and G. H. J. Kruger. 2002. Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J. Plant Physiol. 159(10) : 1077-1086. https://doi.org/10.1078/0176-1617-00745
  11. Hong, E. H., S. D. Kim, Y. H. Kim, and K. W. Chung. 1990. Protein and content amino acid composition of soybeam cultivars. Korean J. Crop. Sci. 35(5):403-412.
  12. Hong, S. B., S. J. Lee, Y. H. Kim, Y. S. Hwang, K. H. Yoon, S. I. Lee, and M. G. Choung. 2010. Variation of anthocyanin, and isoflavone contents in Korean black soybeans grown at different latitudinal locations. K.S.E.A. 29(2) : 129-137.
  13. Im, J. Y., S. C. Kim, S. N. Kim, Y. M. Choi, M. R. Yang, I. H. Cho, and H. R. Kim. 2016. Protein and amino-acid contents in acktae, Seoritae, Huktae, and Seomoktae soybeans with different cooking methods. Korean J. Food Cook Sci. 32(5) : 567-574. https://doi.org/10.9724/kfcs.2016.32.5.567
  14. Jiang, H. F. and D.B. Egli. 1995. Soybean seed number and crop growth rate during flowering. J. Agron. 87(2) : 264-267. https://doi.org/10.2134/agronj1995.00021962008700020020x
  15. Jumrani, K., and V. S. Bhatia. 2019. Interactive effect of temperature and water stress on physiological and biochemical processes in soybean. Physiol Mol Biol Plants. 25(3) : 667-681. https://doi.org/10.1007/s12298-019-00657-5
  16. Kim, D. K., J. G. Choi, H. G. Park, H. T. Shin, S. T. Yoon, K. D. Lee, and Y. S. Rim. 2013. Ecological characteristics and yield of major soybean cultivars at different sowing times in southern korea. Korean J. Crop Sci. 58(1) : 57-66. https://doi.org/10.7740/kjcs.2013.58.1.057
  17. Kim, E. H., S. L. Kim, S. H. Kim, and I. M. Chung. 2012. Comparison of isoflavone and anthocyanins in soybean [Glycine max (L.) Merrill] seeds of different planting dates. J. Agric. Food Chem. 60(41) : 10196-10202. https://doi.org/10.1021/jf3031259
  18. Kim, H. M., E. K. Jang, B. S. Gwak, T. Y. Hwang, G. S. Yun, S. G. Hwang, H. S. Jeong, and H. S. Kim. 2018. Variation of isoflavone contents and classification using multivariate analysis in korean soybean varieties released from 1913 to 2013. Korean J. Breed. Sci. 50(1) : 50-60. https://doi.org/10.9787/KJBS.2018.50.1.50
  19. Kim, H. S., H. L. Song, G. Hu, S. B. Yeon, K. S. Woo, G. M. Yun, G. L. Jang, Y. G. Lee, J. Y. Jeong, G. M. Kim, S. J. Park, H. Y. Kim, I. G. Hwang, and H. S. Jeong. 2010. Exploration of new resources and development of high value-added breeding lines with high processing and functional quality for well-bing foods in soybean. Lim, S. J. eds, 2009 National Agricultural R&D, Test research Project report. Rural Development Administration. Suwon.
  20. Koentjoro, Y., P. E. Sukendah, and D. Purnomo. 2021. The role of silicon on content of proline, protein and abscisic acid on soybean under drought stress. Earth Environ. Sci. 637 : 012086.
  21. Lee, J. E., G. H. Jung, S. K. Kim, M. T. Kim, S. H. Shin, and W. T. Jeon. 2019. Effects of growth period and cumulative temperature on flowering, ripening and yield of soybean by sowing times. Korean J. Crop Sci. 64(4) : 406-413.
  22. Lee, J. E., H. J. Kim, B. W. Lee, Y. Y. Lee, Y. H. Jeon, B. K. Lee, and K. S. Woo. 2018. Quality and physicochemical characteristics of soybean with variety and different seeding periods. J. Korean Soc. Food Sci. Nutr. 7(8) : 804-812.
  23. Lee, S., Y. B. Lee, and H. S. Kim. 2013. Analysis of the General and functional components of various soybeans. J Korean Soc Food Sci Nut. 42(8) : 1255-1262. https://doi.org/10.3746/jkfn.2013.42.8.1255
  24. Magali, N., D. J. Miralles, and A. G. Kantolic. 2015. Postflowering photoperiod and radiation interaction in soybean yield determination: Direct and indirect photoperiodic effects. Field Crops Res. 176 : 45-55. https://doi.org/10.1016/j.fcr.2015.02.018
  25. Moon, H. K., S. W. Lee, J. N. Moon, D. H. Kim, W. J. Yoon, and G. Y. Kim. 2011. Quality characteristics of various beans in distribution. J. East Asian Soc. Dietary Life 21(2) : 215-221.
  26. Rhodes, D., S. Handa, and R. A. Bressan. 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol. 82 : 890-903.
  27. Rural Development Administration (RDA). 2018. https://www.rda.go.kr/main/mainPage.do
  28. Sa, J. H., I. C. Shin, K. J. Jeong, H. S. Oh, Y. J. Kim, E. H. Cheung, G. G. Kim, and D. S. Choi. 2003. Antioxidative activity and chemocal characteristics from different organs of small black soybean (Yak-Kong) grown in the atra og jungsun. Korean Journal of Food Science and Techology. 35(2) : 309-315.
  29. Sabagh, A. E. L., S. Sorour, A. Ragab, H. Saneoka, and M. S. Islam. 2017. The effect of exogenous application of proline and glycine betaineon the nodule activity of soybean under saline condition. J. Agr. biotechnol. 2(1):1-5.
  30. Sharma, S. and P. E. Verslues. 2010. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ. 33(11) : 1838-1851. https://doi.org/10.1111/j.1365-3040.2010.02188.x
  31. Sim, E. Y. C. K. Lee, H. Y. Park, Y. Y. H. S. Choi, S. K. Lee, H.S. Kim, H. S. Kang, B. K. Kang, A.R. Chun, M. J. Kim, J. E. Kwak, and Y. H. Jeon, 2020. Quality characteristics of tofu made from korean soybean cultivars. Food Eng. Prog. 24(1) : 54-61. https://doi.org/10.13050/foodengprog.2020.24.1.54
  32. Song, W. W., R. Yang, T. T. Wu, C. X. Wu, S. Sun, S. W. Zhang, B. Jiang, S. Y. Tian, X. B. Liu, and T. F. Han. 2016. Analyzing the effects of climate factors on soybean protein, oil contents, and composition by extensive and high-density sampling in China. J. Agic. Food Chem. 64 : 4121-4130. https://doi.org/10.1021/acs.jafc.6b00008
  33. Sugiyama, A., Y. Yamazaki, S. Hamamoto, H. Takase, and K. Yazaki. 2017. Synthesis and secretion of isoflavones by field-grown soybean. Plant cell physiol. 58(9):1594-1600. https://doi.org/10.1093/pcp/pcx084
  34. Szekely, G., E. Abraham, A. Cseplo, G. Rigo, L. Zsigmond, J. Csiszar, F. Ayaydin, N. Strizhov, J. Jasik, E. Schmelzer, C. Koncz, and L. Szabados. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53(1) : 11-28. https://doi.org/10.1111/j.1365-313X.2007.03318.x
  35. Verslues, P. E. and R. E. Sharp. 1999. Proline accumulation in Maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiol. 119(4) : 349-1360.
  36. Yu, O., H. T. Nguyen, and D. A. Sleper. 2010. Differential expression of isoflavone biosynthetic gene in soybean during water deficits. Plant Cell Physiol. 51(6) : 936-948. https://doi.org/10.1093/pcp/pcq065
  37. Zheng, S., H. Nakamoto, K. Yoshikawa, T. Furuya, and M. Fukuyama. 2002. Influences of high night temperature on flowering and pod setting in soybean. Plant Prod. Sci. 5(3) : 215-218.  https://doi.org/10.1626/pps.5.215