Browse > Article
http://dx.doi.org/10.7740/kjcs.2022.67.4.242

Effect of Early Soybean Seeding on Isoflavone Content and Amino Acid Composition  

Jong Hyuk Kim (Department of Applied Life Science, Gyeongsang National University)
Mi Ha Jang (Department of Applied Life Science, Gyeongsang National University)
Ju Hee Nam (Environment-Friendly Microorganism Research Institute, Gyeonggi-Do Agricultural Research and Extension Service)
Il Rae Rho (Department of Agronomy, Gyeongsang National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.67, no.4, 2022 , pp. 242-252 More about this Journal
Abstract
Soybeans have various applications, and are a major source of proteins, carbohydrates, and fats. As climate warming has accelerated in recent years, this study was conducted to analyze the effect of different sowing periods on component changes in protein, amino acid, and antioxidant contents of various soybean varieties. The isoflavone content of soybeans that were sown early did not differ with the sowing period. Based on the results, only the total isoflavone content was confirmed in functional soybean cultivars such as Cheongja-5, which had blue-colored seeds; Pungsan and Sowon, which used soybean sprouts; and Jinyang, which lacked a fishy smell. There was no significant difference in the changes in protein and amino acid content in soybean cultivars with respect to the sowing time. The protein and amino acid contents in early-sown soybeans tended to be lower than that in timely sown soybeans. In most varieties, the content of proline was the highest in early-sown soybeans, confirming the presence of stress due to early sowing.
Keywords
amino acid; isoflavone; protein; sowing; soybean;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Song, W. W., R. Yang, T. T. Wu, C. X. Wu, S. Sun, S. W. Zhang, B. Jiang, S. Y. Tian, X. B. Liu, and T. F. Han. 2016. Analyzing the effects of climate factors on soybean protein, oil contents, and composition by extensive and high-density sampling in China. J. Agic. Food Chem. 64 : 4121-4130.   DOI
2 Sugiyama, A., Y. Yamazaki, S. Hamamoto, H. Takase, and K. Yazaki. 2017. Synthesis and secretion of isoflavones by field-grown soybean. Plant cell physiol. 58(9):1594-1600.   DOI
3 Szekely, G., E. Abraham, A. Cseplo, G. Rigo, L. Zsigmond, J. Csiszar, F. Ayaydin, N. Strizhov, J. Jasik, E. Schmelzer, C. Koncz, and L. Szabados. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53(1) : 11-28.   DOI
4 Verslues, P. E. and R. E. Sharp. 1999. Proline accumulation in Maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiol. 119(4) : 349-1360.
5 Yu, O., H. T. Nguyen, and D. A. Sleper. 2010. Differential expression of isoflavone biosynthetic gene in soybean during water deficits. Plant Cell Physiol. 51(6) : 936-948.   DOI
6 Zheng, S., H. Nakamoto, K. Yoshikawa, T. Furuya, and M. Fukuyama. 2002. Influences of high night temperature on flowering and pod setting in soybean. Plant Prod. Sci. 5(3) : 215-218.    DOI
7 Board, J. E., and Q. Tan. 1995. Assimilatory capacity effects on soybean yield components and pod number. Crop Sci. 35(3) : 846-851.   DOI
8 Boydak, E., M. Alpaslan, M. Hayta, S. Gercek, and M. Simsek. 2002. Seed composition of soybeans grown in the Harran region of Turkeyas affected by row spacing and irrigation. J. Agric. Food Chem. 50(16) : 4718-4720.   DOI
9 Caldwell, C. R., S. J. Britz, and R. M. Mirecki. 2005. Effect of temperature, elevated carbon, and drought during seed development on the isoflavone content ofr dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J. Agric. Food Chem. 53(4) : 1125-1129.   DOI
10 Constanza, S. C., M. R. Cora, J. F. Gustavo, J. M. Maria, D. Julio, and L. R. Silvia. 2011. Amino acid composition of soybean seeds as affected by climatic variables. Pesq. Agropec. Bras. 46(12) : 1579-1587.   DOI
11 Delauney, A. J. and D. P. S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4(2) : 215-223.   DOI
12 Eldridge, A. C. and W. F. Kwolek. 1983. Soybean isoflavones: Effect of environment and variety on composition. J. Agric. Food Chem. 31 : 394-396.   DOI
13 Food and Agriculture Organization (FAO). 2002. FAOSTAT https://www.fao.org/faostat.
14 Gibson, L. R. and R. E. Mullen. 1996. Soybean seed quality reductions by high day and night temperature. Crop Sci. 36(6) : 1615-1619   DOI
15 Han, T. F., J. L. Wang, Q. K. Yang, and J. Y. Gai. 1997. Effects of postflowering photoperiod on chemical composition of soybeans. Sci. Agric. Sin. 30(2) : 47-53.
16 Heerden, P. D. R. V. and G. H. J. Kruger. 2002. Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J. Plant Physiol. 159(10) : 1077-1086.   DOI
17 Hong, E. H., S. D. Kim, Y. H. Kim, and K. W. Chung. 1990. Protein and content amino acid composition of soybeam cultivars. Korean J. Crop. Sci. 35(5):403-412.
18 Jiang, H. F. and D.B. Egli. 1995. Soybean seed number and crop growth rate during flowering. J. Agron. 87(2) : 264-267.   DOI
19 Hong, S. B., S. J. Lee, Y. H. Kim, Y. S. Hwang, K. H. Yoon, S. I. Lee, and M. G. Choung. 2010. Variation of anthocyanin, and isoflavone contents in Korean black soybeans grown at different latitudinal locations. K.S.E.A. 29(2) : 129-137.
20 Im, J. Y., S. C. Kim, S. N. Kim, Y. M. Choi, M. R. Yang, I. H. Cho, and H. R. Kim. 2016. Protein and amino-acid contents in acktae, Seoritae, Huktae, and Seomoktae soybeans with different cooking methods. Korean J. Food Cook Sci. 32(5) : 567-574.   DOI
21 Jumrani, K., and V. S. Bhatia. 2019. Interactive effect of temperature and water stress on physiological and biochemical processes in soybean. Physiol Mol Biol Plants. 25(3) : 667-681.   DOI
22 Kim, D. K., J. G. Choi, H. G. Park, H. T. Shin, S. T. Yoon, K. D. Lee, and Y. S. Rim. 2013. Ecological characteristics and yield of major soybean cultivars at different sowing times in southern korea. Korean J. Crop Sci. 58(1) : 57-66.   DOI
23 Kim, E. H., S. L. Kim, S. H. Kim, and I. M. Chung. 2012. Comparison of isoflavone and anthocyanins in soybean [Glycine max (L.) Merrill] seeds of different planting dates. J. Agric. Food Chem. 60(41) : 10196-10202.   DOI
24 Kim, H. M., E. K. Jang, B. S. Gwak, T. Y. Hwang, G. S. Yun, S. G. Hwang, H. S. Jeong, and H. S. Kim. 2018. Variation of isoflavone contents and classification using multivariate analysis in korean soybean varieties released from 1913 to 2013. Korean J. Breed. Sci. 50(1) : 50-60.   DOI
25 Lee, J. E., H. J. Kim, B. W. Lee, Y. Y. Lee, Y. H. Jeon, B. K. Lee, and K. S. Woo. 2018. Quality and physicochemical characteristics of soybean with variety and different seeding periods. J. Korean Soc. Food Sci. Nutr. 7(8) : 804-812.
26 Kim, H. S., H. L. Song, G. Hu, S. B. Yeon, K. S. Woo, G. M. Yun, G. L. Jang, Y. G. Lee, J. Y. Jeong, G. M. Kim, S. J. Park, H. Y. Kim, I. G. Hwang, and H. S. Jeong. 2010. Exploration of new resources and development of high value-added breeding lines with high processing and functional quality for well-bing foods in soybean. Lim, S. J. eds, 2009 National Agricultural R&D, Test research Project report. Rural Development Administration. Suwon.
27 Koentjoro, Y., P. E. Sukendah, and D. Purnomo. 2021. The role of silicon on content of proline, protein and abscisic acid on soybean under drought stress. Earth Environ. Sci. 637 : 012086.
28 Lee, J. E., G. H. Jung, S. K. Kim, M. T. Kim, S. H. Shin, and W. T. Jeon. 2019. Effects of growth period and cumulative temperature on flowering, ripening and yield of soybean by sowing times. Korean J. Crop Sci. 64(4) : 406-413.
29 Lee, S., Y. B. Lee, and H. S. Kim. 2013. Analysis of the General and functional components of various soybeans. J Korean Soc Food Sci Nut. 42(8) : 1255-1262.   DOI
30 Magali, N., D. J. Miralles, and A. G. Kantolic. 2015. Postflowering photoperiod and radiation interaction in soybean yield determination: Direct and indirect photoperiodic effects. Field Crops Res. 176 : 45-55.   DOI
31 Moon, H. K., S. W. Lee, J. N. Moon, D. H. Kim, W. J. Yoon, and G. Y. Kim. 2011. Quality characteristics of various beans in distribution. J. East Asian Soc. Dietary Life 21(2) : 215-221.
32 Rhodes, D., S. Handa, and R. A. Bressan. 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol. 82 : 890-903.
33 Sharma, S. and P. E. Verslues. 2010. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ. 33(11) : 1838-1851.   DOI
34 Rural Development Administration (RDA). 2018. https://www.rda.go.kr/main/mainPage.do
35 Sa, J. H., I. C. Shin, K. J. Jeong, H. S. Oh, Y. J. Kim, E. H. Cheung, G. G. Kim, and D. S. Choi. 2003. Antioxidative activity and chemocal characteristics from different organs of small black soybean (Yak-Kong) grown in the atra og jungsun. Korean Journal of Food Science and Techology. 35(2) : 309-315.
36 Sabagh, A. E. L., S. Sorour, A. Ragab, H. Saneoka, and M. S. Islam. 2017. The effect of exogenous application of proline and glycine betaineon the nodule activity of soybean under saline condition. J. Agr. biotechnol. 2(1):1-5.
37 Sim, E. Y. C. K. Lee, H. Y. Park, Y. Y. H. S. Choi, S. K. Lee, H.S. Kim, H. S. Kang, B. K. Kang, A.R. Chun, M. J. Kim, J. E. Kwak, and Y. H. Jeon, 2020. Quality characteristics of tofu made from korean soybean cultivars. Food Eng. Prog. 24(1) : 54-61.   DOI