DOI QR코드

DOI QR Code

밀 재배기간 온도상승이 빵용 밀의 생육 및 품질 특성에 미치는 영향

Growth and Quality Characteristics of Korean Bread Wheat in Response to Elevated Temperature during their Growing Season

  • 조철오 (농촌진흥청 국립식량과학원 밀연구팀 ) ;
  • 정한용 (농촌진흥청 국립식량과학원 밀연구팀 ) ;
  • 김유림 (농촌진흥청 국립식량과학원 밀연구팀 ) ;
  • 박진희 (농촌진흥청 국립식량과학원 밀연구팀 ) ;
  • 김경훈 (농촌진흥청 국립식량과학원 밀연구팀 ) ;
  • 김경민 (농촌진흥청 국립식량과학원 밀연구팀 ) ;
  • 강천식 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 고종민 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 손지영 (농촌진흥청 국립식량과학원 밀연구팀)
  • Chuloh Cho (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Han-yong Jeong (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Yurim Kim (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Jinhee Park (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Kyeong-Hoon Kim (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Kyeong-Min Kim (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Chon-Sik Kang (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Jong-Min Ko (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Jiyoung Shon (Wheat Research Team, National Institute of Crop Science, RDA)
  • 투고 : 2022.10.26
  • 심사 : 2022.11.07
  • 발행 : 2022.12.01

초록

본 연구에서는 온도상승에 따른 국내산 빵용 밀의 수량과 품질 변화 연구를 위해 TGT을 이용하여 생육기간 중 정상 온도 대비 1-3℃ 증가한 조건에서 수량구성요소와 수량 그리고 밀가루 품질 및 분자생리적 요인을 분석함으로써 밀 생육기 전반에 미치는 온도상승의 영향을 연구하였고, 연구 결과는 다음과 같다. 1. 밀 생육기간 중 평균온도가 1℃ 상승함에 따라 백강과 조경 두 품종 모두 출수기는 3일 정도 단축되었고, 일수립수가 감소하였으며, 온도가 상승함에 따라 수량이 감소하였다. 2. 밀가루 품질 분석 결과 아밀로스와 회분 함량은 백강과 조경 두 품종 모두 온도상승에 의한 영향을 받지 않았으나, T0 조건 대비 T3 조건에서 단백질 함량은 증가하였고 총 전분 함량은 감소하였으며, 3. 등숙기 중 글리아딘과 글루테닌 합성 및 대사 관련 유전자 발현 분석 결과 백강과 조경 두 품종 모두 종자 발달 후기에서 T0 대비 T3 조건에서 발현양이 높았으며, 전분 합성 관련 유전자 발현양은 빠르게 감소하였다. 4. TGT을 이용한 국내산 빵용 밀의 생육기 전반에 미치는 온도상승이 수량과 품질에 영향을 미쳤으며, 관련 유전자 발현 분석은 향후 기후변화 대응을 위한 기초 자료로 활용할 수 있을 것이다.

Wheat (Triticum aestivum L.) is a major staple foods and is in increasing demand in the world. The elevated temperature caused by changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15 and 25℃, and it is necessary to study the physiological characteristic of wheat according to elevated temperatures. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in temperature gradient tunnels (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions: T0 (control, near ambient temperature), T1 (T0+1℃), T2 (T0+2℃), (T0+2℃), T3 (T0+3℃). The period from sowing to heading stage accelerated and the number of grains per spike and grain yield reduced under T3 condition compared with those under T0 condition. Grain filling rate and grain maturity also accelerated with elevated temperature (T3). The increase in temperature led to the increase in protein contents, whereas decreased the total starch contents. These results are consistent with the decreased expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during the late grain filling stage. Taken together, our results suggest that the increase in temperature (T3) led to the decrease in grain yield by regulating the number of grains/spike, whereas increased the protein content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. In addition, our results provide a useful physiological information on the response of wheat to heat stress.

키워드

과제정보

본 연구는 농촌진흥청 기관 과제(세부과제명: 빵용 밀의 생육기간 온도차이에 의한 품질 변화 구명, 과제 번호: PJ014285022022)의 지원으로 수행되었습니다.

참고문헌

  1. Acevedo, E., P. Silva, and H. Silva. 2002. Wheat growth and physiology. Food and agriculture organization. pp. 39-70.
  2. Altenbach, S. B., F. M. DuPont, K. M. Kothari, R. Chan, E. L. Johnson, and D. Lieu. 2003. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J. Cereal Sci. 37 : 9-20. https://doi.org/10.1006/jcrs.2002.0483
  3. American Association of Cereal Chemists International. 2010. Approved methods of analysis, 11th Ed. Methods 08-01.01, 26-31.01, 44-15.02, 54-40.02, 54-60.01, 55-40.01, 41756-70.01 Available online from: https://www.cerealsgrains.org/resources/methods/Pages/default. Aspx.
  4. Baik, B.-K. 2010. Effects of flour protein and starch on noodle quality. Asian Noodles: Science, technology, and processing. Hou, G. G. (Ed.) pp. 261-284.
  5. Batts, G. R., T. R. Wheeler, J. I. L. Morison, R. H. Ellis, and P. Hadley. 1996. Developmental and tillering responses of winter wheat (Triticum aestivuni) crops to CO2 and temperature. J. Agr. Sci. 127(1) : 23-35. https://doi.org/10.1017/S0021859600077340
  6. Bergkamp, B., S. M. Impa, A. R. Asebedo, A. K. Fritz, and S. V. Krishna Jagadish. 2018. Prominent winter wheat varieties response to post-flowering heat stress under controlled chambers and field based heat tents. Field Crop Res. 222 : 143-152. https://doi.org/10.1016/j.fcr.2018.03.009
  7. Chunduri, V., A. Kaur, S. Kaur, A. Kumar, S. Sharma, N. Sharma, P. Singh, P. Kapoor, S. Kaur, A. Kumari, J. Roy, J. Kaur and M. Garg. 2021. Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day-night combined heat stresses during grain filling in wheat. Front. Plant Sci. 12 : 660446.
  8. Dias, A. S. and F. C. Lidon. 2009. Evaluation of grain filling rate and duration in bread and durum wheat under heat stress after anthesis. J. Agron. Crop Sci. 195 : 137-147. https://doi.org/10.1111/j.1439-037X.2008.00347.x
  9. Dwivedi, S. K., S. Basu, S. Kumar, G. Kumar, V. Prakash, S. Kumar, J. S. Mishra, B. P. Bhatt, N. Malviya, G. P. Singh, and A. Arora. 2017. Heat stress induced impairment of starch mobilisation regulates pollen viability and grain yield in wheat: Study in eastern indo-gangetic plains. Field Crops Res. 206 : 106-114. https://doi.org/10.1016/j.fcr.2017.03.006
  10. FAO. FAOSTAT. 2018. Food and agriculture organization of the united nations. pp. 1-2.
  11. Farooq, M., H. Bramley, J. A. Palta, and K. H. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30 : 491-507. https://doi.org/10.1080/07352689.2011.615687
  12. Fischer, R. A. and O. R. Maurer. 1976. Crop temperature modification and yield potential in a dwarf spring wheat. Crop Sci. 16(6) : 855-859. https://doi.org/10.2135/cropsci1976.0011183X001600060031x
  13. Fontana, G., A. Toreti, A. Ceglar, and G. D. Sanctis. 2015. Early heat waves over Italy and their impacts on durum wheat yields. Nat. Hazards Earth Syst. Sci. 15 : 1631-1637. https://doi.org/10.5194/nhess-15-1631-2015
  14. Gupta, N. K., S. Agarwal, V. P. Agarwal, N. S. Nathawat, S. Gupta, and G. Singh. 2013. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiol. Plant 35 : 1837-1842. https://doi.org/10.1007/s11738-013-1221-1
  15. Hadley, P., G. R. Batts, R. H. Ellis, L. Morlson, S. Pearson, and T. R. Wheeler. 1995. Temperature gradient chambers for research on global environment change. II. A twin-wall tunnel system for low-stature, field-grown crops using a split heat pump. Plant Cell Environ. 18 : 1055-1063. https://doi.org/10.1111/j.1365-3040.1995.tb00617.x
  16. Hansen, J., M. Sato, and R. Ruedy. 2012. Perception of climate change. Proc. Natl. Acad. Sci. 109 : 14726-14727.
  17. Hinton, J. J. C. 1959. The distribution of ash in the wheat kernel. Cereal Chem. 36 : 19-31.
  18. Horie, T., H. Nakagawa, J. Nakano, K. Hamotanl, and H. Y. Kim. 1995. Temperature gradient chambers for research on global environment change III A system designed for rice in Kyoto, Japan. Plant Cell Environ. 18 : 1064-1069. https://doi.org/10.1111/j.1365-3040.1995.tb00618.x
  19. Jeong, H. -Y., I. -B. Choi, S. -H. Ahn, W. -H. Hwang, J. -H. Jeong, H. -S. Lee, J. -T. Yun, and K. -J. Kim. 2018. Evaluation of wheat growth and yield change in high temperature conditions of greenhouse. J. Korean Soc. Int. Agric. 30(2) : 134-144. https://doi.org/10.12719/KSIA.2018.30.2.134
  20. Khan, A., M. Ahmad, M. Ahmed, and M. Iftikhar Hussain. 2020. Rising atmospheric temperature impact on wheat and thermotolerance strategies. Plants (Basel) 10(1) : 43.
  21. Kino, R. I., T. K. Pellny, R. A. Mitchell, A. Gonzalez-Uriarte, and P. Tosi. 2020. High post-anthesis temperature effects on bread wheat (Triticum aestivum L.) grain transcriptome during early grain-filling. BMC Plant Biol. 20 : 170.
  22. Kumari, A., R. R. Kumar, J. P. Singh, P. Verma, G. P. Singh, V. Chinnusamy, S. Praveen, and S. Goswami. 2020. Characterization of the starch synthase under terminal heat stress and its effect on grain quality of wheat. Biotech. 10(12) : p. 531.
  23. Li, D. 2013. Proteins from land plants-potential resources for human nutrition and food security. Trends Food Sci. Tech. 32(1) : 25-42. https://doi.org/10.1016/j.tifs.2013.05.005
  24. Li, R., L. Hou, A. Zhang, Y. Lu, W. Song, W. Tadesse, X. Wang, M. Liu, W. Zheng, and S. Xu. 2018. Heat stress in filling stage confers distinct effect on starch granules formation in different thermotolerant wheat accessions. Pak. J. Bot. 50 : 913-920.
  25. Liu, P., W. Guo, Z. Jiang, H. Pu, C. Feng, X. Zhu, Y. Peng, A. Kuang, and C.R. Little. 2011. Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J. Agric. Sci. 149(2) : 159-169. https://doi.org/10.1017/S0021859610001024
  26. Masci, S., L. Rovelli, D. D. Kasarda, W. H. Vensel, and D. Lafiandra. 2002. Characterisation and chromosomal localisation of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor. Appl. Genet. 104 : 422-428. https://doi.org/10.1007/s001220100761
  27. Mahdavi, S., A. Arzani, S. A. M. M. Maibody, and A. A. Mehrabi. 2021. Photosynthetic and yield performance of wheat (Triticum aestivum L.) under sowing in hot environment. Acta Physiol. Plant 43 : 106.
  28. Metakovsky, E. V., G. P. Branlard, and R. A. Graybosch. 2006. Gliadins of common wheat: polymorphism and genetics. In Gliadin and glutenin: the unique balance of wheat quality. pp. 35-84.
  29. Mueller, B., M. Hauser, C. Iles, R. H. Rimi, F. W. Zwiers, and H. Wan. 2015. Lengthening of the growing season in wheat and maize producing regions. Weather Clim. Extrem 9 : 47-56. https://doi.org/10.1016/j.wace.2015.04.001
  30. Nuttall, J. G., K. M., Barlow, A. J. Delahunty, B. P. Christy, and G. J. O'Leary. 2018. Acute high temperature response in wheat. Agron. J. 110 : 1296-1308. https://doi.org/10.2134/agronj2017.07.0392
  31. Rangan, P., A. Furtado, and R. Henry. 2020. Transcriptome profiling of wheat genotypes under heat stress during grainfilling. J. Cereal Sci. 91 : 102895.
  32. Rural Development Administration (RDA). 2012. Agricultural science and technology of analysis based on research (I). pp. 315-374.
  33. Sharma, A., S. Garg, I. Sheikh, P. Vyas, and H. S. Dhaliwa. 2020. Effect of wheat grain protein composition on end-use quality. J. Food Sci. Technol. 57(8) : 2771-2785. https://doi.org/10.1007/s13197-019-04222-6
  34. Singh, A., P. Kumar, M. Sharma, R. Tuli, H. S. Dhaliwal, A. Chaudhury, D. Pal, and J. Roy. 2015. Expression patterns of genes involved in starch biosynthesis during seed development in bread wheat (Triticum aestivum). Mol. Breeding 35 : 184.
  35. Sofield, I., L. T. Evans, M. G. Cook, and I. F. Wardlaw. 1977. Factors influencing the rate and duration of grain filling in wheat. Aust. J. Plant Physiol. 4 : 785-797.
  36. Song, L., L. Li, L. Zhao, Z. Liu, T. Xie, and X. Li. 2020. Absence of Dx2 at Glu-d1 locus weakens gluten quality potentially regulated by expression of nitrogen metabolism enzymes and glutenin-related genes in wheat. Int. J. Mol. Sci. 21(4) : 1383.
  37. Spiertz, J. H. J., R. J. Hamer, H. Xu, C. Primo-Martin, C. Don, and P. E. L. van der Putten. 2006. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. Eur. J. Agron. 25(2) : 89-95. https://doi.org/10.1016/j.eja.2006.04.012
  38. Tahir, I. S. A., N. Nakata, A. M. Ali, H. M. Mustafa, A. S. I. Saad, K. Takata, N. Ishikawa, and O. S. Abdalla. 2006. Genotypic and temperature effects on wheat grain yield and quality in a hot irrigated environment. Plant Breed. 125 : 323-330. https://doi.org/10.1111/j.1439-0523.2006.01236.x
  39. Tao, Z., X. Chang, D. Yang, Y. Wang, S. Ma, Y. Yang, and G. Zhao. 2018. Effects of sulfur fertilization and short-term high temperature on wheat grain production and wheat flour proteins. Crop J. 6(4) : 413-425. https://doi.org/10.1016/j.cj.2018.01.007
  40. Wheeler, T. R., G. R. Batts, R. H. Ellis, P. Hadley, and J. I. L. Morison. 1996. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J. Agr. Sci. 127(1) : 37-48. https://doi.org/10.1017/S0021859600077352
  41. Williams, P. C., F. D. Kuzina, and I. Hlynka. 1970. A rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem. 47 : 411-421.