DOI QR코드

DOI QR Code

Mg2NiHx-CaF2 수소 저장 복합체의 물질 전과정 평가

Material Life Cycle Assessment on Mg2NiHx-CaF2 Composites

  • 황준현 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 신효원 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 홍태환 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공)
  • HWANG, JUNE-HYEON (Department of Energy Materials and Engineering, Korea National University of Transportation) ;
  • SHIN, HYO-WON (Department of Energy Materials and Engineering, Korea National University of Transportation) ;
  • HONG, TAE-WHAN (Department of Energy Materials and Engineering, Korea National University of Transportation)
  • 투고 : 2021.12.28
  • 심사 : 2022.02.14
  • 발행 : 2022.04.30

초록

Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(2019R1F1A1041405)와 교육부에서 자금을 조달받은 한국기초과학원 보조금(2019R1A6C1010047)과 중소기업 창업부가 부여한 재원(S3045542)에 의해 작성되었으며, 이에 감사드립니다.

참고문헌

  1. R. Etienne, M. Trudeau, and K. Zaghib, "Hydrogen storage for mobility: a review", Materials, Vol. 12, No. 12, 2019, pp. 1973, doi: https://doi.org/10.3390/ma12121973.
  2. D. Furat, M. Anda, and G. M. Shafiullah. "Hydrogen production for energy: an overview." Int. Hydrog. Energy, Vol. 45, No. 7, 2020, pp. 3847-3869, doi: https://doi.org/10.1016/j.ijhydene.2019.12.059.
  3. P. Lee, J. Kim, K. Bae, S. Jeong, K. Kang, K. Jung, C. Park, and Y. Kim, "Heat transfer characteristics and hydrogen storage kinetics of metal hydride-expended graphite composite", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 564-570, doi: https://doi.org/10.7316/KHNES.2020.31.6.564.
  4. C. S. Park, K. Jung, S. U. Jeong, K. S. Kang, Y. H. Lee, Y. S. Park, and B. H. Park, "Development of hydrogen storage reactor using composite of metal hydride materials with ENG", Int. Hydrog. Energy, Vol. 45, No. 51, 2020, pp. 27434-27442, doi: https://doi.org/10.1016/j.ijhydene.2020.07.062.
  5. W. Ying and Y. Wang, "Recent advances in additive-enhanced magnesium hydride for hydrogen storage", Progress in Natural Science: Materials International, Vol. 27, No. 1, 2017, pp. 41-49, doi: https://doi.org/10.1016/j.pnsc.2016.12.016.
  6. I. P. Jain, C. Lal, and A. Jain. "Hydrogen storage in Mg: a most promising material", Int. Hydrog. Energy, Vol. 35, No. 10, 2010, pp. 5133-5144, doi: https://doi.org/10.1016/j.ijhydene.2009.08.088.
  7. H. R. Bakhsheshi-Rad, M. H. Idris, M. R. A. Kadir, and M. Daroonparvar, "Effect of fluoride treatment on corrosion behavior of Mg-Ca binary alloy for implant application", Transactions of Nonferrous Metals Society of China, Vol. 23, No. 3, 2013, pp. 699-710, doi: https://doi.org/10.1016/S1003-6326(13)62519-4.
  8. J. S. Yu, J. H. Han, H. W. Sin, and T. W. Hong, "Fabrication and evaluation hydrogenation absorbing on Mg2NiHx10 wt% CaF2 composites", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 553-557, doi: https://doi.org/10.7316/KHNES.2020.31.6.553.
  9. H. J. Hyeon, H. W. Shin, and T. W. Hong, "Evaluation of the effect by calcium fluoride on the hydrogenation kinetics of Mg2NiHx", The Korean Journal of Metals and Materials, submitting.
  10. J. Leslie, P. Y. Pontalier, and C. Sablayrolles, "Life cycle assessment (LCA) applied to the process industry: a review", The International Journal of Life Cycle Assessment, Vol. 17, 2012, pp. 1028-1041, doi: https://doi.org/10.1007/s11367-012-0432-9.
  11. M. G. Kim, J. T. Son, and T. W. Hong, "Evaluation of TiN-Zr Hydrogen permeation membrane by MLCA (material life cycle assessment)", Clean Technology , Vol. 24, No. 1, 2018, pp. 9-14, doi: https://doi.org/10.7464/ksct.2018.24.1.009.
  12. J. H. Han, M. G. Kim, Y. H. Lee, and T. W. Hong, "Hydrogenation properties of Mg-Al-Zn-CaO-H x prepared by hydrogen Induced mechanical alloying (HIMA)", Journal of Nanoscience and Nanotechnology, Vol. 20, No. 1, 2020. pp. 409-414, doi: https://doi.org/10.1166/jnn.2020.17264.
  13. H. Okamoto, "Mg-Ni (magnesium-nickel)", Journal of Phase Equilibria and Diffusion, Vol. 28, No. 3, 2007, pp. 303, doi: https://doi.org/10.1007/s11669-007-9058-1.
  14. M. W, Jung, J. H. Park, K. W. Cho, K. I. Kim, J. H. Chol, S. H. Kim, and T. W. Hong, "Hydrogenation properties of MgHx-V2O5 composites by hydrogen induced mechanical alloying", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 1, 2010, pp. 58-63.
  15. Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Luckey, and H. K. Liu, "Effects of iron oxide (Fe2O3, Fe3O4) on hydrogen storage properties of Mg-based composites", J. Alloys Compd, Vol. 422, No. 1-2, 2006, pp. 299-304, doi: https://doi.org/10.1016/j.jallcom.2005.11.074.
  16. L. Silvestri, A. Forcina, C. Silvestri, and G. Ioppolo, "Life cycle assessment of sanitaryware production: A case study in Italy", Journal of Cleaner Production, Vol. 251, 2020, pp. 119708, doi: https://doi.org/10.1016/j.jclepro.2019.119708.
  17. S. K. Sahoo, S. Parveen, and J. J Panda, "The present and future of nanotechnology in human health care", Nanomedicine, Vol. 3, No. 1, 2007, pp. 20-31, doi: https://doi.org/10.1016/j.nano.2006.11.008.
  18. S. J. Jeong, J. Y. Lee. J. S. Shon, and T. Hur, "Life cycle assessments of long-term and short-term environmental impacts for the incineration of spent Li-ion Batteries (LIBs)", J. Korean Ind. Eng. Chem, Vol. 17, No. 2, 2006, pp. 163-169.
  19. T. Sadhasivam, H. T. Kim, S. Jung, S. H. Roh, J. H. Park, and H. Y. Jung, "Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review", Renewable and Sustainable Energy Reviews, Vol. 72, 2017, pp. 523-534, doi: https://doi.org/10.1016/j.rser.2017.01.107.
  20. S. Aoudj, A. Khelifa, N. Drouiche, and M. Hecini, "Removal of fluoride and turbidity from semiconductor industry wastewater by combined coagulation and electroflotation", Desalination and Water Treatment, Vol. 57, No. 39, 2016, pp. 18398-18405, doi: https://doi.org/10.1080/19443994.2015.1095120.
  21. Z. Z. Yuan, F. S. Zhang, and T. Q. Yao, "An environmentally friendly ball milling process for recovery of valuable metals from e-waste scraps", Waste Management, Vol. 68, 2017, pp. 490-497, doi: https://doi.org/10.1016/j.wasman.2017.07.029.