DOI QR코드

DOI QR Code

HALPERN TSENG'S EXTRAGRADIENT METHODS FOR SOLVING VARIATIONAL INEQUALITIES INVOLVING SEMISTRICTLY QUASIMONOTONE OPERATOR

  • Wairojjana, Nopparat (Applied Mathematics Program, Faculty of Science and Technology Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU)) ;
  • Pakkaranang, Nuttapol (Mathematics and Computing Science Program, Faculty of Science and Technology Phetchabun Rajabhat University)
  • 투고 : 2021.05.27
  • 심사 : 2021.11.06
  • 발행 : 2022.03.15

초록

In this paper, we study the strong convergence of new methods for solving classical variational inequalities problems involving semistrictly quasimonotone and Lipschitz-continuous operators in a real Hilbert space. Three proposed methods are based on Tseng's extragradient method and use a simple self-adaptive step size rule that is independent of the Lipschitz constant. The step size rule is built around two techniques: the monotone and the non-monotone step size rule. We establish strong convergence theorems for the proposed methods that do not require any additional projections or knowledge of an involved operator's Lipschitz constant. Finally, we present some numerical experiments that demonstrate the efficiency and advantages of the proposed methods.

키워드

과제정보

Nuttapol Pakkaranang was partially financial supported by Phetchabun Rajabhat University.

참고문헌

  1. J. Abubakar, P. Kumam, A.H. Ibrahim, and A. Padcharoen, Relaxed inertial Tseng's type method for solving the inclusion problem with application to image restoration, Mathematics, 8(5) (2020), Article ID 818.
  2. A.S. Antipin, On a method for convex programs using a symmetrical modification of the Lagrange function, Economika i Matem. Metody., 12 (1976), 1164-1173.
  3. H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011.
  4. Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148(2) (2010), 318-335. https://doi.org/10.1007/s10957-010-9757-3
  5. Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26(4-5) (2011), 827-845. https://doi.org/10.1080/10556788.2010.551536
  6. P. Cholamjiak, D.V. Hieu and Y.J. Cho, Relaxed Forward-Backward Splitting Methods for Solving Variational Inclusions and Applications, J. Sci. Comput., 88 (2021). https://doi.org/10.1007/s10915-021-01608-7.
  7. A. Daniilidis and N. Hadjisavvas, Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions, J. Optim. Theory Appl., 102(3) (1999), 525-536. https://doi.org/10.1023/A:1022693822102
  8. C.M. Elliott, Variational and quasivariational inequalities: applications to free-boundary problems (Claudio Baiocchi and ant'onio Capelo), SIAM Rev., 29(2) (1987), 314-315. https://doi.org/10.1137/1029059
  9. N. Hadjisavvas and S. Schaible, On strong pseudomonotonicity and (semi)strict quasimonotonicity, J. Optim. Theory Appl., 79(1) (1993), 139-155. https://doi.org/10.1007/BF00941891
  10. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  11. D.V. Hieu and P. Cholamjiak, Modified extragradient method with Bregman distance for variational inequalities, Appl. Anal., (2020), Accepted. https://doi.org/10.1080/00036811.2020.1757078.
  12. A.N. Iusem and B.F. Svaiter, A variant of Korpelevich's method for variational inequalities with a new search strategy, Optimization, 42(4) (1997), 309-321. https://doi.org/10.1080/02331939708844365
  13. G. Kassay, J. Kolumban and Z. Pales, On Nash stationary points, Publ. Math. Debrecen, 54(3-4) (1999), 267-279. https://doi.org/10.5486/PMD.1999.1902
  14. G. Kassay, J. Kolumban and Z. Pales, Factorization of minty and stampacchia variational inequality systems, European J. Oper. Res., 143(2) (2002), 377-389. https://doi.org/10.1016/S0377-2217(02)00290-4
  15. J.K. Kim and Salahuddin, Extragradient methods for generalized mixed equilibrium problems and fixed point problem in Hilbert spaces, Nonlinear Funct. Anal. Appl., 22(4) (2017), 693-709. https://doi.org/10.22771/NFAA.2017.22.04.01
  16. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Classic in Applied Mathematics, Society for Industrial and Applied Mathematics, (SIAM), Philadelphia, PA, 2000.
  17. I. Konnov, Equilibrium models and variational inequalities, 210, Elsevier, 2007.
  18. G. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonom. i Mat. Metody, 12(4) (1976), 747-756.
  19. P.-E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16(7-8) (2008), 899-912. https://doi.org/10.1007/s11228-008-0102-z
  20. Y.V. Malitsky and V.V. Semenov, An extragradient algorithm for monotone variational inequalities, Cybernet. Systems Anal., 50(2) (2014), 271-277. https://doi.org/10.1007/s10559-014-9614-8
  21. A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241(1) (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
  22. K. Muangchoo, A Viscosity type projection method for solving pseudomonotone variational inequalities, Nonlinear Funct. Anal. Appl., 26(2) (2021), 347-371. https://doi.org/10.22771/NFAA.2021.26.02.08
  23. M.A. Noor, Some iterative methods for nonconvex variational inequalities, Comput. Math. Model., 21(1) (2010), 97-108. https://doi.org/10.1007/s10598-010-9057-7
  24. A. Padcharoen, D. Kitkuan, W. Kumam and P. Kumam, Tseng methods with inertial for solving inclusion problems and application to image deblurring and image recovery problems, Comput. Math. Meth., 3 (2020), e1088. https://doi.org/10.1002/cmm4.1088.
  25. N. Pakkaranang, H. ur Rehman, and W. Kumam, Two strongly convergent self-adaptive iterative schemes for solving pseudo-monotone equilibrium problems with applications, Demonstr. Math., 54(1) (2021), 280-298. https://doi.org/10.1515/dema-2021-0030
  26. S. Reich, D.V. Thong, P. Cholamjiak and L.V. Long, Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space, Numer. Algorithms, 88(2) (2021), 813-835. https://doi.org/10.1007/s11075-020-01058-6
  27. H. ur Rehman, N. Pakkaranang, A. Hussain and N. Wairojjana, A modied extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces, J. Math. Comput. Sci., 22(1) (2021), 38-48. https://doi.org/10.22436/jmcs.022.01.04
  28. H. ur Rehman, P. Kumam, I.K. Argyros, W. Deebani and W. Kumam, Inertial extragradient method for solving a family of strongly pseudomonotone equilibrium problems in real hilbert spaces with application in variational inequality problem, Symmetry, 12(4) (2020), Article ID 503. https://doi.org/10.3390/sym12040503.
  29. H. ur Rehman, P. Kumam, Y.J. Cho, Y.I. Suleiman and W. Kumam, Modified Popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Softw., 36(1) (2021), 82-113. https://doi.org/10.1080/10556788.2020.1734805
  30. H. ur Rehman, P. Kumam, Y.J. Cho and P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibirum problems, J. Inequal. Appl., 2019 (2019), Article ID 282. https://doi.org/10.1186/s13660-019-2233-1.
  31. H. ur Rehman, P. Kumam, A. Gibali, and W. Kumam, Convergence analysis of a general inertial projection-type method for solving pseudomonotone equilibrium problems with applications, J. Inequal. Appl., 2021 (2021), Article ID 63. https://doi.org/10.1186/s13660-021-02591-1.
  32. H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi and W. Jirakitpuwapat, The inertial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium problems, Symmetry, 12(3) (2020), Article ID 463. https://doi.org/10.3390/sym12030463.
  33. G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.
  34. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38(2) (2000), 431-446. https://doi.org/10.1137/S0363012998338806
  35. N. Wairojjana, H. ur Rehman, M.D. la Sen and N. Pakkaranang, A general inertial projection-type algorithm for solving equilibrium problem in Hilbert spaces with applications in fixed-point problems, Axioms 9(3) (2020), Article ID 101. https://doi.org/10.3390/axioms9030101.
  36. H.-K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65(1) (2002), 109-113. https://doi.org/10.1017/S0004972700020116
  37. L. Zhang, C. Fang and S. Chen, An inertial subgradient-type method for solving singlevalued variational inequalities and fixed point problems, Numer. Algo., 79 (2018), 941-956. https://doi.org/10.1007/s11075-017-0468-9