DOI QR코드

DOI QR Code

SOME INEQUALITIES ON POLAR DERIVATIVE OF A POLYNOMIAL

  • 투고 : 2021.05.20
  • 심사 : 2021.12.08
  • 발행 : 2022.03.15

초록

Let p(z) be a polynomial of degree n having no zero in |z| < k, k ≤ 1, then Govil proved $$\max_{{\mid}z{\mid}=1}{\mid}p^{\prime}(z){\mid}{\leq}{\frac{n}{1+k^n}}\max_{{\mid}z{\mid}=1}{\mid}p(z){\mid}$$, provided |p'(z)| and |q'(z)| attain their maximal at the same point on the circle |z| = 1, where $$q(z)=z^n{\overline{p(\frac{1}{\overline{z}})}}$$. In this paper, we extend the above inequality to polar derivative of a polynomial. Further, we also prove an improved version of above inequality into polar derivative.

키워드

참고문헌

  1. A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55 (1988), 183-193. https://doi.org/10.1016/0021-9045(88)90085-8
  2. A. Aziz and N. Ahmad, Inequalities for the derivative of a polynomial, Proc. Indian Acad. Sci. Math. Sci., 107(2) (1997), 189-196. https://doi.org/10.1007/BF02837727
  3. A. Aziz and N.A. Rather, A refinement of a theorem of Paul Turan concerning polynomials, Math. Inequal. Appl., 1 (1998), 231-238.
  4. A. Aziz and W.M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math., 29(2) (1998), 163-173.
  5. S. Bernstein, Lecons Sur Les Proprietes extremales et la meilleure approximation des functions analytiques d'une fonctions reele, Paris, 1926.
  6. T.N. Chan and M.A. Malik, On Erdos-Lax theorem, Proc. Indian Acad. Sci., 92(3) (1983), 191-193. https://doi.org/10.1007/BF02876763
  7. K.K. Dewan and M. Bidkham, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324. https://doi.org/10.1016/0022-247X(92)90298-R
  8. K.K. Dewan and A. Mir, On the maximum modulus of a polynomial and its derivatives, Int. J. Math. Math. Sci., 16 (2005), 2641-2645.
  9. N.K. Govil, On the Theorem of S. Bernstein, Proc. Nat. Acad. Sci., 50 (1980), 50-52.
  10. N.K. Govil and G.N. McTume, Some generalizations involving the polar derivative for an inequality of Paul Turan, Acta. Math. Hungar., 104(1-2) (2004), 115-126. https://doi.org/10.1023/B:AMHU.0000034366.66170.01
  11. N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a halfplane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517. https://doi.org/10.2307/1994818
  12. P.D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513. https://doi.org/10.1090/S0002-9904-1944-08177-9
  13. M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., s2-1 (1969), 57-60. https://doi.org/10.1112/jlms/s2-1.1.57