DOI QR코드

DOI QR Code

두 가지 임플란트 드릴 조합에 따른 온도 변화 및 효율 비교

Temperature change and performance of bur efficiency for two different drill combinations

  • 투고 : 2022.01.04
  • 심사 : 2022.03.10
  • 발행 : 2022.04.30

초록

목적: 본 연구의 목적은 두 가지 다른 임플란트 드릴 조합을 사용하여 열 발생과 드릴링 시간에 따른 성능 효율성을 평가하는 것이다. 재료 및 방법: 본 연구에서는 소갈비뼈를 연구재료로 사용하였다. 표본을 시험하기 위해 소의 뼈에서 근막 및 근육을 제거하고 드릴링 영역 주위에 온도 센서를 장착했고, 드릴링 후 온도 및 시간을 측정하였다. 실험군은 이니셜 드릴 전에 사용하는 드릴에 따라 가이드 드릴 사용 그룹과 린드만 드릴 사용 그룹으로 나누었다. 가이드 드릴 사용 그룹의 드릴 사용 순서는 다음과 같다; guide drill (ø 2.25), initial drill (ø 2.25), twist drill (ø 2.80), 그리고 twist drill (ø 3.20). 린드만 드릴 사용 그룹의 드릴 사용 순서는 다음과 같다; Lindmann drill (ø 2.10), initial drill (ø 2.25), twist drill (ø 2.80), 그리고 twist drill (ø 3.20). 통계적 분석은 Mann-Whitney U test 및 Friedman test를 이용하여 집단간 차이를 분석하였다 (α = .05). 결과: 가이드 드릴 사용 그룹의 각 시편에 대한 평균 성능 효율은 0.3861 - 1.1385 mm3/s 범위를 보였고, 린드만 드릴 사용 그룹의 평균 성능 효율은 0.1700 - 0.4199 mm3/s를 보였다. 가이드 드릴을 사용한 드릴 조합은 드릴링 시간으로 계산했을 때 우수한 성능 효율을 보였다 (P < .001). 결론: 가이드 드릴 사용 그룹이 린드만 드릴 사용 그룹보다 우수한 성능 효율을 보였기 때문에, 1차 드릴링을 수행하는 과정에서 가이드 드릴의 사용이 더욱 적합하였다.

Purpose. The purpose of this study was to evaluate the performance efficiency of two different drill combinations according to the heat generated and drilling time. Materials and methods. In this study, cow ribs were used as research materials. To test the specimen, cow bones were rid of fascia and muscles, and a temperature sensor was mounted around the drilling area. The experimental group was divided into a group using a guide drill and a group using a Lindmann drill according to the drill used before the initial drilling. The drilling sequence of the guide drilling group is as follows; guide drill (ø 2.25), initial drill (ø 2.25), twist drill (ø 2.80), and twist drill (ø 3.20). The drilling sequence of the Lindmann drilling group is as follows; Lindmann drill (ø 2.10), initial drill (ø 2.25), twist drill (ø 2.80), and twist drill (ø 3.20). The temperature was measured after drilling. For statistical analysis, the difference between the groups was analyzed using the Mann-Whitney U test and the Friedman test was used (α = .05). Results. The average performance efficiency for each specimen of guide drilling group ranged from 0.3861 to 1.1385 mm3/s and that of Lindmann drilling group ranged from 0.1700 to 0.4199 mm3/s. The two drill combinations contained a guide drill and Lindmann drill as their first drills. The combination using the guide drill demonstrated excellent performance efficiency when calculated using the drilling time (P < .001). Conclusion. Since the guide drill group showed better performance efficiency than the Lindmann drill group, the use of the guide drill was more suitable for the primary drilling process.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1C1C2007040).

참고문헌

  1. Naito M, Lung K, Linke B. Retrospective analysis of the survival of dental implants placed by dental students: a 10-year chart review. J Can Dent Assoc 2020;86:k11.
  2. Kirstein K, Dobrzynski M, Kosior P, Chroszcz A, Dudek K, Fita K, Parulska O, Rybak Z, Skalec A, Szklarz M, Janeczek M. Infrared thermographic assessment of cooling effectiveness in selected dental implant systems. Biomed Res Int 2016;2016:1879468.
  3. Kniha K, Heussen N, Weber E, Mohlhenrich SC, Holzle F, Modabber A. Temperature threshold values of bone necrosis for thermo-explantation of dental implants-a systematic review on preclinical in vivo research. Materials (Basel) 2020;13:3461. https://doi.org/10.3390/ma13163461
  4. Kim SJ, Yoo J, Kim YS, Shin SW. Temperature change in pig rib bone during implant site preparation by low-speed drilling. J Appl Oral Sci 2010;18:522-7. https://doi.org/10.1590/S1678-77572010000500016
  5. Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM. Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg 2006;64:265-9. https://doi.org/10.1016/j.joms.2005.10.011
  6. Alves SF, Wassall T. In vitro evaluation of osteoblastic cell adhesion on machined osseointegrated implants. Braz Oral Res 2009;23:131-6. https://doi.org/10.1590/s1806-83242009000200007
  7. Misir AF, Sumer M, Yenisey M, Ergioglu E. Effect of surgical drill guide on heat generated from implant drilling. J Oral Maxillofac Surg 2009;67:2663-8. https://doi.org/10.1016/j.joms.2009.07.056
  8. Sharawy M, Misch CE, Weller N, Tehemar S. Heat generation during implant drilling: the significance of motor speed. J Oral Maxillofac Surg 2002;60:1160-9. https://doi.org/10.1053/joms.2002.34992
  9. Cordioli G, Majzoub Z. Heat generation during implant site preparation: an in vitro study. Int J Oral Maxillofac Implants 1997;12:186-93.
  10. Lamazza L, Lollobrigida M, Vozza I, Palmieri L, Stacchi C, Lombardi T, De Biase A. Piezoelectric implant site preparation: influence of handpiece movements on temperature elevation. Materials (Basel) 2020;13:4072. https://doi.org/10.3390/ma13184072
  11. Scarano A, Lorusso F, Noumbissi S. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with steel vs. zirconia implant drill. J Clin Med 2020;9:148. https://doi.org/10.3390/jcm9010148
  12. Katic Z, Jukic T, Stubljar D. Effects of osteotomy lengths on the temperature rise of the crestal bone during implant site preparation. Implant Dent 2018;27:213-20. https://doi.org/10.1097/ID.0000000000000732