DOI QR코드

DOI QR Code

다양한 부위에서의 감소된 두께가 지르코니아 크라운의 파절 저항에 미치는 영향

The effect of reduced thickness in different regions on the fracture resistance of monolithic zirconia crowns

  • 라일라 아부카보스 (가톨릭대학교 의과대학 서울성모병원 치과보철과) ;
  • 박재억 (가톨릭대학교 의과대학 서울성모병원 구강악안면외과) ;
  • 이원섭 (가톨릭대학교 의과대학 서울성모병원 치과보철과)
  • Abukabbos, Layla (Department of Prosthodontics, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Park, Je Uk (Department of Oral and Maxillofacial Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Lee, Wonsup (Department of Prosthodontics, Seoul St. Mary's Hospital, The Catholic University of Korea)
  • 투고 : 2021.10.21
  • 심사 : 2022.01.25
  • 발행 : 2022.04.30

초록

목적: 이번 연구의 목적은 단일구조 지르코니아(monolithic zirconia) 크라운의 서로 다른 부위에서, 감소된 지르코니아의 두께가 파절 저항성에 미치는 복합적인 영향을 평가하기 위한 것이다. 재료 및 방법: 실험을 위해 7개의 니켈-크롬 다이를 제작하였다. 다이는 하악 제 1대구치를 치아 형성한 지대치 3D 모델을 바탕으로 제작되었다. 지대치는 1.5 mm 교합면 삭제를 시행하였고, 변연은 1.0 mm의 deep chamfer로 형성하였다. 이 지대치 형태를 바탕으로 지르코니아 블록(Luxen Zirconia)를 사용하여, 교합면 두께는 0.3 mm, 0.5 mm, 1.5 mm, 축면 두께는 0.3 mm, 0.5 mm, 1.0 mm로 설정한 63개의 지르코니아 크라운을 제작하였다. 이 크라운은 니켈 크롬 다이에 레진 시멘트를 이용하여 접착하였다. 그 다음, electronic universal testing machine을 사용하여 크라운이 파절될 때까지 load-to fracture 시험을 진행하였다. 이후 scanning electron microscope (SEM)를 사용하여 크라운의 파절 형태를 관찰하였다. 통계 분석을 위해 Two-way ANOVA 방법을 사용하였고, 이에 대하여 Tuckey HSD test로 사후 검정을 시행하였다(P < .05). 결과: 모든 지르코니아 크라운의 평균 파절 저항 값은 구치부의 평균 저작력보다 큰 값을 나타냈다. 또한 Two-way ANOVA 결과, 지르코니아 크라운의 교합면 두께와 축면 두께는 파절 저항에 통계적으로 유의한 영향을 미치는 것으로 나타났다(P < .05). 그러나, 지르코니아의 축면 두께가 0.5 mm 이상일 때, 파절 저항에 미치는 영향은 통계적으로 유의한 차이를 보이지 않았다. 나타난 파괴 양상은 균열의 전파 양상에 따라 크라운의 부분 파절 또는 완전 파절로 나타났다. 결론: 이번 연구의 한계 내에서, 극도로 감소된 두께를 가진 CAD-CAM 단일구조 지르코니아 크라운은 구치부 교합력을 견딜 수 있는 적절한 파절 저항을 보였다. 또한, 지르코니아 크라운의 교합면 두께와 축면 두께는 파절 저항에 유의미한 영향을 나타냈으며 복합적인 결과를 보였다.

Purpose. This study aims to evaluate the combined effect of reduced thickness in different regions on the fracture resistance of monolithic zirconia crowns. Materials and methods. Seven nickel-chromium dies were generated from a 3D model of mandibular first molar using the digital scanner with the following geometries: 1.5 mm occlusal reduction, 1.0 mm deep chamfer. Based on the abutment model, Zirconia blocks (Luxen Zirconia) were selected to fabricate Sixty-three zirconia crowns with occlusal thicknesses of 0.3 mm, 0.5 mm, and 1.5 mm, and different axial thicknesses of 0.3 mm, 0.5 mm, and 1.0 mm. All crowns were cemented by resin cement. Next, the crowns were subjected to load-to-fracture test until fracture using an electronic universal testing machine. In addition, fracture patterns were observed with a scanning electron microscope (SEM). Two-way ANOVA and the Tuckey HSD test for post hoc analysis were used for statistical analysis (P < .05). Results. The mean values of fracture resistancerecorded was higher than the average biting force in the posterior region. The two-way ANOVA showed that the occlusal and axial thickness affected the fracture resistance significantly (P < .05). However, the effect of axial thickness on fracture resistance did not show a statistical difference when thicker than 0.5 mm. The observed failure modes were partial or complete fracture depending on the severity of crack propagation. Conclusion. Within the limitations of the present study, the CAD-CAM monolithic zirconia crown with extremely reduced thickness showed adequate fracture resistance to withstand occlusal load in molar regions. In addition, both occlusal and axial thickness affected the fracture resistance of the zirconia crown and showed different results as combined.

키워드

참고문헌

  1. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007;35:819-26. https://doi.org/10.1016/j.jdent.2007.07.008
  2. Waltimo A, Kononen M. A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scand J Dent Res 1993;101:171-5.
  3. Braun S, Bantleon HP, Hnat WP, Freudenthaler JW, Marcotte MR, Johnson BE. A study of bite force, part 1: Relationship to various physical characteristics. Angle Orthod 1995;65:367-72.
  4. Hattori Y, Satoh C, Kunieda T, Endoh R, Hisamatsu H, Watanabe M. Bite forces and their resultants during forceful intercuspal clenching in humans. J Biomech 2009;42:1533-8. https://doi.org/10.1016/j.jbiomech.2009.03.040
  5. Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M. Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod 2011;33:427-33. https://doi.org/10.1093/ejo/cjq097
  6. Edelhoff D, Sorensen JA. Tooth structure removal associated with various preparation designs for anterior teeth. J Prosthet Dent 2002;87:503-9. https://doi.org/10.1067/mpr.2002.124094
  7. Mondelli J, Steagall L, Ishikiriama A, de Lima Navarro MF, Soares FB. Fracture strength of human teeth with cavity preparations. J Prosthet Dent 1980;43:419-22. https://doi.org/10.1016/0022-3913(80)90213-9
  8. Larson TD, Douglas WH, Geistfeld RE. Effect of prepared cavities on the strength of teeth. Oper Dent 1981;6:2-5.
  9. Murray PE, Smith AJ, Windsor LJ, Mjor IA. Remaining dentine thickness and human pulp responses. Int Endod J 2003;36:33-43. https://doi.org/10.1046/j.0143-2885.2003.00609.x
  10. Dahl BL. Dentine/pulp reactions to full crown preparation procedures. J Oral Rehabil 1977;4:247-54. https://doi.org/10.1111/j.1365-2842.1977.tb00989.x
  11. Kontakiotis EG, Filippatos CG, Stefopoulos S, Tzanetakis GN. A prospective study of the incidence of asymptomatic pulp necrosis following crown preparation. Int Endod J 2015;48:512-7. https://doi.org/10.1111/iej.12340
  12. Zarb GA, MacKay HF. The partially edentulous patient. I. The biologic price of prosthodontic intervention. Aust Dent J 1980;25:63-8. https://doi.org/10.1111/j.1834-7819.1980.tb03676.x
  13. Sorrentino R, Triulzio C, Tricarico MG, Bonadeo G, Gherlone EF, Ferrari M. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness. J Mech Behav Biomed Mater 2016;61:328-33. https://doi.org/10.1016/j.jmbbm.2016.04.014
  14. Oilo M, Schriwer C, Flinn B, Gjerdet NR. Monolithic zirconia crowns - wall thickness, surface treatment and load at fracture. Biomater Investig Dent 2019;6:13-22. https://doi.org/10.1080/26415275.2019.1642112
  15. Skjold A, Schriwer C, Oilo M. Effect of margin design on fracture load of zirconia crowns. Eur J Oral Sci 2019;127:89-96. https://doi.org/10.1111/eos.12593
  16. Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Ortengren U. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-8. https://doi.org/10.3109/00016357.2015.1007479
  17. Lan TH, Liu PH, Chou MM, Lee HE. Fracture resistance of monolithic zirconia crowns with different occlusal thicknesses in implant prostheses. J Prosthet Dent 2016;115:76-83. https://doi.org/10.1016/j.prosdent.2015.06.021
  18. Tekin YH, Hayran Y. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness. J Adv Prosthodont 2020;12:283-90. https://doi.org/10.4047/jap.2020.12.5.283
  19. Weigl P, Sander A, Wu Y, Felber R, Lauer HC, Rosentritt M. In-vitro performance and fracture strength of thin monolithic zirconia crowns. J Adv Prosthodont 2018;10:79-84. https://doi.org/10.4047/jap.2018.10.2.79
  20. Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M. Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta Biomater 2008;4:1440-7. https://doi.org/10.1016/j.actbio.2008.04.012
  21. Mitov G, Anastassova-Yoshida Y, Nothdurft FP, von See C, Pospiech P. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns. J Adv Prosthodont 2016;8:30-6. https://doi.org/10.4047/jap.2016.8.1.30