DOI QR코드

DOI QR Code

Drying Techniques of Microalgal Biomass: A Review

  • Kim, Gyu Min (Department of Chemical Engineering, Research Center of Chemical Technology, Hankyong National University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Research Center of Chemical Technology, Hankyong National University)
  • 투고 : 2022.01.27
  • 심사 : 2022.03.01
  • 발행 : 2022.04.10

초록

Microalgae are attracting attention as a resource for the production of biofuels, food nutrients, biochemicals, and bioplastics. Among a wide range of sources of the biomass, microalgae have been highlighted due to relatively easy cultivation, ability to eliminate carbon dioxide, and low culturing cost. Despite the great potential of microalgal biomass as a biological material, the complexity and relatively expensive downstream processes have inhibited the commercial use of microalgae. In this study, we reviewed recent techniques for microalgal drying for the production of microalgal based products. As drying processes comprise the largest portion of microalgae processing cost, an efficient drying technique is key to the utilization of microalgal biomass.

키워드

과제정보

This study was supported by "Carbon to X" project (Project No. 2021M3H7A1026228) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

참고문헌

  1. A. Aliyu, J. Lee, and A. Harvey, Microalgae for biofuels via thermochemical conversion processes: A review of cultivation, harvesting and drying processes, and the associated opportunities for integrated production, Bioresour. Technol. Rep., 14, 100676 (2021). https://doi.org/10.1016/j.biteb.2021.100676
  2. C. K. Phwan, H. C. Ong, W.-H. Chen, T. C. Ling, E. P. Ng, and P. L. Show, Overview: comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae, Energy Convers. Manag., 173, 81-94 (2018). https://doi.org/10.1016/j.enconman.2018.07.054
  3. B. Wang, Y. Li, N. Wu, and C. Q. Lan, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707-718 (2008). https://doi.org/10.1007/s00253-008-1518-y
  4. R. A. Ynalvez, J. Dinamarca, and J. V. Moroney, Algal Photosynthesis, John Wiley & Sons, Inc., New Jersey, USA (2018).
  5. F. Wollmann, S. Dietze, J. U. Ackermann, T. Bley, T. Walther, J. Steingroewer, and F. Krujatz, Microalgae wastewater treatment: Biological and technological approaches, Eng. Life Sci., 19, 860-871 (2019). https://doi.org/10.1002/elsc.201900071
  6. N. Abdel-Raouf, A. Al-Homaidan, and I. Ibraheem, Microalgae and wastewater treatment, Saudi J. Biol. Sci., 19, 257-275 (2012). https://doi.org/10.1016/j.sjbs.2012.04.005
  7. K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo, P. Cheng, J. Liu, and M. Addy, Microalgae-based wastewater treatment for nutrients recovery: A review, Bioresour. Technol., 291, 121934 (2019). https://doi.org/10.1016/j.biortech.2019.121934
  8. L. Zhu, Y. Nugroho, S. Shakeel, Z. Li, B. Martinkauppi, and E. Hiltunen, Using microalgae to produce liquid transportation biodiesel: what is next?, Renew. Sust. Energ. Rev., 78, 391-400 (2017). https://doi.org/10.1016/j.rser.2017.04.089
  9. M. E. Abd El-Hack, S. Abdelnour, M. Alagawany, M. Abdo, M. A. Sakr, A. F. Khafaga, S. A. Mahgoub, S. S. Elnesr, and M. G. Gebriel, Microalgae in modern cancer therapy: Current knowledge, Biomed. Pharmacother., 111, 42-50 (2019). https://doi.org/10.1016/j.biopha.2018.12.069
  10. M. Irshad, M. E. Hong, A. A. Myint, J. Kim, and S. J. Sim, Safe and complete extraction of astaxanthin from Haematococcus pluvialis by efficient mechanical disruption of cyst cell wall, Int. J. Food Eng., 15, 20190128 (2019).
  11. E. Forjan, F. Navarro, M. Cuaresma, I. Vaquero, M. C. Ruiz-Dominguez, Z. Gojkovic, M. Vazquez, M. Marquez, B. Mogedas, and E. Bermejo, Microalgae: fast-growth sustainable green factories, Crit. Rev. Environ. Sci. Technol., 45, 1705-1755 (2015). https://doi.org/10.1080/10643389.2014.966426
  12. M. M. Phukan, R. S. Chutia, B. Konwar, and R. Kataki, Microalgae Chlorella as a potential bio-energy feedstock, Appl. Energy, 88, 3307-3312 (2011). https://doi.org/10.1016/j.apenergy.2010.11.026
  13. J.-Y. Lee, C. Yoo, S.-Y. Jun, C.-Y. Ahn, and H.-M. Oh, Comparison of several methods for effective lipid extraction from microalgae, Bioresour. Technol., 101, 75-77 (2010).
  14. J. S. Tan, S. Y. Lee, K. W. Chew, M. K. Lam, J. W. Lim, S.-H. Ho, and P. L. Show, A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids, Bioengineered, 11, 116-129 (2020). https://doi.org/10.1080/21655979.2020.1711626
  15. S. Nagappan, S. Devendran, P.-C. Tsai, S. Dinakaran, H.-U. Dahms, and V. K. Ponnusamy, Passive cell disruption lipid extraction methods of microalgae for biofuel production-a review, Fuel, 252, 699-709 (2019). https://doi.org/10.1016/j.fuel.2019.04.092
  16. J. C. de Carvalho, A. I. Magalhaes Jr, G. V. de Melo Pereira, A. B. P. Medeiros, E. B. Sydney, C. Rodrigues, D. T. M. Aulestia, L. P. de Souza Vandenberghe, V. T. Soccol, and C. R. Soccol, Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed, Bioresour. Technol., 300, 122719 (2020). https://doi.org/10.1016/j.biortech.2019.122719
  17. S. Pierobon, X. Cheng, P. Graham, B. Nguyen, E. Karakolis, and D. Sinton, Emerging microalgae technology: a review, Sustain. Energy Fuels, 2, 13-38 (2018). https://doi.org/10.1039/C7SE00236J
  18. D.-J. Lee, G.-Y. Liao, Y.-R. Chang, and J.-S. Chang, Coagulation-membrane filtration of Chlorella vulgaris, Bioresour. Technol., 108, 184-189 (2012). https://doi.org/10.1016/j.biortech.2011.12.098
  19. H. Zheng, Z. Gao, J. Yin, X. Tang, X. Ji, and H. Huang, Harvesting of microalgae by flocculation with poly (γ-glutamic acid), Bioresour. Technol., 112, 212-220 (2012). https://doi.org/10.1016/j.biortech.2012.02.086
  20. C. Dixon and L. R. Wilken, Green microalgae biomolecule separations and recovery, Bioresour. Bioprocess., 5, 1-24 (2018). https://doi.org/10.1186/s40643-017-0187-z
  21. F. Fasaei, J. Bitter, P. Slegers, and A. Van Boxtel, Techno-economic evaluation of microalgae harvesting and dewatering systems, Algal Res., 31, 347-362 (2018). https://doi.org/10.1016/j.algal.2017.11.038
  22. A. P. Biz, L. Cardozo-Filho, and E. F. Zanoelo, Drying dynamics of microalgae (Chlorella pyrenoidosa) dispersion droplets, Chem. Eng. Process. - Process Intensif., 138, 41-48 (2019). https://doi.org/10.1016/j.cep.2019.03.007
  23. K.-Y. Show, D.-J. Lee, and J.-S. Chang, Algal biomass dehydration, Bioresour. Technol., 135, 720-729 (2013). https://doi.org/10.1016/j.biortech.2012.08.021
  24. C. V. Al Rey, A. P. Mayol, A. T. Ubando, J. B. M. M. Biona, N. B. Arboleda, M. Y. David, R. B. Tumlos, H. Lee, O. H. Lin, and R. A. Espiritu, Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production, Clean Technol. Environ. Policy, 18, 2441-2451 (2016). https://doi.org/10.1007/s10098-016-1169-0
  25. L. Yanfen, H. Zehao, and M. Xiaoqian, Energy analysis and environmental impacts of microalgal biodiesel in China, Energy Policy, 45, 142-151 (2012). https://doi.org/10.1016/j.enpol.2012.02.007
  26. C. G. Khoo, Y. K. Dasan, M. K. Lam, and K. T. Lee, Algae biorefinery: review on a broad spectrum of downstream processes and products, Bioresour. Technol., 292, 121964 (2019). https://doi.org/10.1016/j.biortech.2019.121964
  27. K. Sander and G. S. Murthy, Life cycle analysis of algae biodiesel, Int. J. Life Cycle Assess., 15, 704-714 (2010). https://doi.org/10.1007/s11367-010-0194-1
  28. J. Brink and S. Marx, Harvesting of Hartbeespoort Dam micro-algal biomass through sand filtration and solar drying, Fuel, 106, 67-71 (2013). https://doi.org/10.1016/j.fuel.2012.10.034
  29. F. Delrue, P.-A. Setier, C. Sahut, L. Cournac, A. Roubaud, G. Peltier, and A.-K. Froment, An economic, sustainability, and energetic model of biodiesel production from microalgae, Bioresour. Technol., 111, 191-200 (2012). https://doi.org/10.1016/j.biortech.2012.02.020
  30. A. Fudholi, K. Sopian, M. Y. Othman, and M. H. Ruslan, Energy and exergy analyses of solar drying system of red seaweed, Energy Build., 68, 121-129 (2014). https://doi.org/10.1016/j.enbuild.2013.07.072
  31. J. Prakash, B. Pushparaj, P. Carlozzi, G. Torzillo, E. Montaini, and R. Materassi, Microalgal Biomass Drying By a Simple Solar Device, Int. J. Sol. Energy, 18, 303-311 (1997). https://doi.org/10.1080/01425919708914325
  32. A. Singh and S. I. Olsen, A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Appl. Energy, 88, 3548-3555 (2011). https://doi.org/10.1016/j.apenergy.2010.12.012
  33. M. Aziz, T. Oda, and T. Kashiwagi, Enhanced high energy efficient steam drying of algae, Appl. Energy, 109, 163-170 (2013). https://doi.org/10.1016/j.apenergy.2013.04.004
  34. N. C. Silva, M. V. Machado, R. J. Brandao, C. R. Duarte, and M. A. Barrozo, Dehydration of microalgae Spirulina platensis in a rotary drum with inert bed, Powder Technol., 351, 178-185 (2019). https://doi.org/10.1016/j.powtec.2019.04.025
  35. C.-L. Chen, J.-S. Chang, and D.-J. Lee, Dewatering and drying methods for microalgae, Drying Technol., 33, 443-454 (2015). https://doi.org/10.1080/07373937.2014.997881
  36. R. Rubio, M. Ruiz-Chancho, and J. Lopez-Sanchez, Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants, TrAC Trends Anal. Chem., 29, 53-69 (2010). https://doi.org/10.1016/j.trac.2009.10.002
  37. T. Viswanathan, S. Mani, K. Das, S. Chinnasamy, A. Bhatnagar, R. Singh, and M. Singh, Effect of cell rupturing methods on the drying characteristics and lipid compositions of microalgae, Bioresour. Technol., 126, 131-136 (2012). https://doi.org/10.1016/j.biortech.2012.08.122
  38. C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol., 102, 71-81 (2011). https://doi.org/10.1016/j.biortech.2010.06.159
  39. F. Mohn and C. Soeder, Improved technologies for the harvesting and processing of microalgae and their impact on production costs, Arch. Hydrobiol. Bech. Ergebn. Lemnol., 1, 228-253 (1978).
  40. C. J. Soeder, Massive cultivation of microalgae: results and prospects, Hydrobiologia, 72, 197-209 (1980). https://doi.org/10.1007/BF00016247
  41. R. B. Draaisma, R. H. Wijffels, P. E. Slegers, L. B. Brentner, A. Roy, and M. J. Barbosa, Food commodities from microalgae, Curr. Opin. Biotechnol., 24, 169-177 (2013). https://doi.org/10.1016/j.copbio.2012.09.012
  42. L.-P. Lin, Microstructure of spray-dried and freeze-dried micro-algal powders, Food Struct., 4, 341-348 (1985).
  43. C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, and Y. Kitamura, Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration, Bioresour. Technol., 207, 67-75 (2016). https://doi.org/10.1016/j.biortech.2016.01.129
  44. X. Liu, A. F. Clarens, and L. M. Colosi, Algae biodiesel has potential despite inconclusive results to date, Bioresour. Technol., 104, 803-806 (2012). https://doi.org/10.1016/j.biortech.2011.10.077
  45. E. Becker and L. V. Venkataraman, Biotechnology and Exploitation of Algae-the Indian Approach, 216, Agency for Technical Cooperation, Eschlorm, Germany (1982).
  46. A. Larrosa, A. Comitre, L. Vaz, and L. Pinto, Influence of air temperature on physical characteristics and bioactive compounds in vacuum drying of Arthrospira spirulina, J. Food Process Eng., 40, e12359 (2017). https://doi.org/10.1111/jfpe.12359
  47. B. Mee-ngern, S. J. Lee, J. Choachamnan, and W. Boonsupthip, Penetration of juice into rice through vacuum drying, LWT, 57, 640-647 (2014). https://doi.org/10.1016/j.lwt.2014.02.001
  48. G. Shelef, A. Sukenik, and M. Green, Microalgae harvesting and processing: a literature review, United States. https://doi.org/10.2172/6204677 (1984).
  49. F. de Farias Neves, M. Demarco, and G. Tribuzi, Drying and quality of microalgal powders for human alimentation. In: Microalgae-From Physiology to Application, IntechOpen Ltd., London, UK (2019).
  50. E. Lawrenz, E. J. Fedewa, and T. L. Richardson, Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts, J. Appl. Phycol., 23, 865-871 (2011). https://doi.org/10.1007/s10811-010-9600-0
  51. S. Y. Lee, J. M. Cho, Y. K. Chang, and Y.-K. Oh, Cell disruption and lipid extraction for microalgal biorefineries: A review, Bioresour. Technol., 244, 1317-1328 (2017). https://doi.org/10.1016/j.biortech.2017.06.038
  52. C. Ochoa-Martinez, P. Quintero, A. Ayala, and M. Ortiz, Drying characteristics of mango slices using the Refractance Windowtm technique, J. Food Eng., 109, 69-75 (2012). https://doi.org/10.1016/j.jfoodeng.2011.09.032
  53. S. Chandrasekaran, S. Ramanathan, and T. Basak, Microwave food processing-A review, Food Res. Int., 52, 243-261 (2013). https://doi.org/10.1016/j.foodres.2013.02.033
  54. J. Iqbal, Development of cost-effective and benign lipid extraction system for microalgae, Doctoral Dissertation, Louisiana State University, USA (2012).
  55. R. Sivaramakrishnan, S. Suresh, A. Pugazhendhi, J. M. N. Pauline, and A. Incharoensakdi, Response of Scenedesmus sp. to microwave treatment: Enhancement of lipid, exopolysaccharide and biomass production, Bioresour. Technol., 312, 123562 (2020). https://doi.org/10.1016/j.biortech.2020.123562
  56. C. Chen, S. Yang, and X. Bu, Microwave drying effect on pyrolysis characteristics and kinetics of microalgae, BioEnergy Research, 12, 400-408 (2019). https://doi.org/10.1007/s12155-019-09970-z
  57. R. V. Kapoore, T. O. Butler, J. Pandhal, and S. Vaidyanathan, Microwave-assisted extraction for microalgae: from biofuels to biorefinery, Biology, 7, 18 (2018). https://doi.org/10.3390/biology7010018
  58. B. Behera and P. Balasubramanian, Experimental and modelling studies of convective and microwave drying kinetics for microalgae, Bioresour. Technol., 340, 125721 (2021). https://doi.org/10.1016/j.biortech.2021.125721
  59. O. O. Agbede, E. O. Oke, S. I. Akinfenwa, K. T. Wahab, S. Ogundipe, O. A. Aworanti, A. O. Arinkoola, S. E. Agarry, O. O. Ogunleye, and F. N. Osuolale, Thin layer drying of green micro-algae (Chlorella sp.) paste biomass: drying characteristics, energy requirement and mathematical modeling, Bioresour. Technol. Rep., 11, 100467 (2020). https://doi.org/10.1016/j.biteb.2020.100467