DOI QR코드

DOI QR Code

Efficacy of flavanone as a treatment for pulmonary fibrosis

Flavanone의 폐섬유증 치료물질로의 유용성

  • Hee Young, Kim (ACHEMBIO Co., Ltd., 508 Jeju Univ. Startup Incubation Center Bldg 3) ;
  • Hyerin, Jeong (ACHEMBIO Co., Ltd., 508 Jeju Univ. Startup Incubation Center Bldg 3) ;
  • Young Mee, Kim (Department of Biochemistry, School of Medicine, Jeju National University) ;
  • Moonjae, Cho (ACHEMBIO Co., Ltd., 508 Jeju Univ. Startup Incubation Center Bldg 3)
  • Received : 2022.09.28
  • Accepted : 2022.11.23
  • Published : 2022.12.31

Abstract

We examined the lung anti-fibrotic properties of flavanones and flavones, which are flavonoid compounds, in bleomycin- and TGF-β1-stimulated A549 cells. Taken together, treatment with Bleomycin and TGF-β1 increased intracellular ROS by increasing the expression of various NOX families in A549 cells; further, the increased ROS levels resulted in increased fibrosis markers and induced pulmonary fibrosis. Flavonoid treatment has been demonstrated to alleviate or inhibit pulmonary fibrosis by modulating Smad-dependent and -non-dependent TGF-β mechanisms by modulating intracellular NOX expression.

Flavonoid 골격 중 flavanone과 flavone 골격 화합들의 유용성과 가능성에 대해 여러 연구들이 되어있다. 본 연구의 목적은 폐섬유화에 대한 치료물질로서 효능이 있는 flavanone 및 flavone 골격 유래 화합물들을 탐색하는 것에 있다. Flavanone 및 flavone 골격 유래 화합물들이 폐섬유화 억제 효능이 있는지 탐색하기 위해 폐섬유화 유도 물질인 bleomycin과 TGF-β1으로 자극한 A549 세포에서 flavanone 및 flavone 골격 유래 화합물들에 의해 폐섬유증 마커들을 약화시키는지 여부를 확인하였다. 실험 결과를 종합해보면 7,2',3'-trimethoxyflavanone(ICC no. 3), 7,3'-dimethoxyflavone (ICC no. 5), 2'-hydroxyflavanone (ICC no. 6)은 폐섬유화 유도관련 단백질 마커들의 발현을 감소시킨다는 것을 발견하였다. 본 연구에서는 이러한 결과들을 통해 flavanone과 flavone 골격 화합물 중 3가지가 폐섬유증의 예방과 치료에 대한 가능성이 있음을 제시한다.

Keywords

Acknowledgement

이 논문은 2022학년도 제주대학교 교육·연구 및 학생지도비 지원에 의해서 연구되었음.

References

  1. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727-747. doi: 10.1093/ajcn/79.5.727 
  2. Aranganathan S, Nalini N (2009) Efficacy of the potential chemopreventive agent, hesperetin (citrus flavanone), on 1, 2-dimethylhydrazine induced colon carcinogenesis. Food Chem Toxicol 47: 2594-2600. doi: 10.1016/j.fct.2009.07.019 
  3. Ahmadi A, Shadboorestan A (2016) Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 68: 29-39. doi: 10.1080/01635581.2015.1078822 
  4. Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, Borghi SM, Bordignon J, Silva RL, Cunha TM, Alves-Filho JC, Cunha FQ, Casagrande R (2016) The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J Nutr Biochem 33: 8-14. doi: 10.1016/j.jnutbio.2016.03.013 
  5. Bittencourt-Mernak MI, Pinheiro NM, Santana FP, Guerreiro MP, Saraiva-Romanholo BM, Grecco SS, Caperuto LC, Felizardo RJ, Camara NO, Tiberio IF (2017) Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 312: L217-L230. doi: 10.1152/ajplung.00444.2015 
  6. Martens S, Mithofer A (2005) Flavones and flavone synthases. Phytochemistry 66: 2399-2407. doi: 10.1016/j.phytochem.2005.07.013 
  7. Nielsen S, Young J, Daneshvar B, Lauridsen S, Knuthsen P, Sandstrom B, Dragsted LO (1999) Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 81: 447-455. doi: 10.1017/S000711459900080X 
  8. Li B, Du P, Du Y, Zhao D, Cai Y, Yang Q, Guo Z (2021) Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci 269: 119008. doi: 10.1016/j.lfs.2020.119008 
  9. Lin Y, Shi R, Wang X, Shen H-M (2008) Luteolin, a flavonoid with potential for cancer prevention and therapy. Current Cancer Drug Targets 8: 634-646. doi: 10.2174/156800908786241050 
  10. Hossain R, Ray P, Sarkar C, Islam M, Khan RA, Khalipha ABR, Islam MT, Cho WC, Martorell M, Sharifi-Rad J (2022) Natural compounds or their derivatives against breast cancer: a computational study. Biomed Res Int 2022. doi: 10.1155/2022/5886269 
  11. Sun P, Huang R, Qin Z, Liu F (2022) Influence of Tangeretin on the Exponential Regression of Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Nephropathy. Appl Biochem Biotechnol 1-16. doi: 10.1007/s12010-022-03920-w 
  12. Society AT (2000) Idiopathic pulmonary fibrosis: diagnosis and treatment: international consensus statement. Am J Respir Crit Care Med 161: 646-664  https://doi.org/10.1164/ajrccm.161.2.ats3-00
  13. Tabata C, Kadokawa Y, Tabata R, Takahashi M, Okoshi K, Sakai Y, Mishima M, Kubo H (2006) All-trans-retinoic acid prevents radiation-or bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med 174: 1352-1360. doi: 10.1164/rccm.200606-862OC 
  14. McKleroy W, Lee T-H, Atabai K (2013) Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology 304: L709-L721. doi: 10.1152/ajplung.00418.2012 
  15. Xiong A, Liu Y (2017) Targeting hypoxia inducible factors-1α as a novel therapy in fibrosis. Frontiers in pharmacology 8: 326. doi: 10.3389/fphar.2017.00326 
  16. Zhang HY, Gharaee-Kermani M, Zhang K, Karmiol S, Phan SH (1996) Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis. Am J Clin Pathol 148: 527 
  17. Kasuga I, Yonemaru M, Kiyokawa H, Ichinose Y, Toyama K (1996) Clinical evaluation of serum type IV collagen 7S in idiopathic pulmonary fibrosis. Respirology 1: 277-281. doi: 10.1111/j.1440-1843.1996.tb00043.x 
  18. Hecker L, Cheng J, Thannickal VJ (2012) Targeting NOX enzymes in pulmonary fibrosis. Cellular and Molecular Life Sciences 69: 2365-2371. doi: 10.1007/s00018-012-1012-7 
  19. Schwarzbauer JE, DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harbor perspectives in biology 3: a005041. doi: 10.1101/cshperspect.a005041 
  20. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews 56: 317-333. doi: 10.1111/j.1753-4887.1998.tb01670.x 
  21. Caltagirone S, Ranelletti FO, Rinelli A, Maggiano N, Colasante A, Musiani P, Aiello FB, Piantelli M (1997) Interaction with type II estrogen binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small-cell lung cancer. American Journal of Respiratory Cell and Molecular Biology 17: 51-59. doi: 10.1165/ajrcmb.17.1.2728 
  22. Ranelletti FO, Ricci R, Larocca LM, Maggiano N, Capelli A, Scambia G, Benedetti-Panici P, Mancuso S, Rumi C, Piantelli M (1992) Growthinhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. International Journal of Cancer 50: 486-492. doi: 10.1002/ijc.2910500326 
  23. Yoshida M, Sakai T, Hosokawa N, Marui N, Matsumoto K, Fujioka A, Nishino H, Aoike A (1990) The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS letters 260: 10-13. doi: 10.1016/0014-5793(90)80053-L 
  24. Banerjee ER, Kar S, Konsam S, Hore G, Mitra S, Biswas S, Sinha A, Jana NR (2015) Therapeutic use of fisetin, curcumin, and mesoporous carbon nanoparticle loaded fisetin in bleomycin-induced idiopathic pulmonary fibrosis. Biomed Res Ther 2: 1-13. doi: 10.7603/s40730-015-0010-4 
  25. Chen J, Stubbe J (2004) Bleomycins: new methods will allow reinvestigation of old issues. Curr Opin Chem Biol 8: 175-181. doi: 10.1016/j.cbpa.2004.02.008 
  26. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425: 577-584. doi: 10.1038/nature02006 
  27. Walters DM, Cho H-Y, Kleeberger SR (2008) Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxidants & redox signaling 10: 321-332. doi: 10.1089/ars.2007.1901 
  28. Muthuramalingam K, Cho M, Kim Y (2020) Cellular senescence and EMT crosstalk in bleomycin-induced pathogenesis of pulmonary fibrosis-an in vitro analysis. Cell Biol Int 44: 477-487. doi:10.1002/cbin.11248