DOI QR코드

DOI QR Code

Effect of soil stabilizer on the bioavailability of arsenic in paddy soil

안정화제가 논토양 내 비소의 생물유효도에 미치는 영향

  • Ji-Hyock, Yoo (Department of Agro-Food Safety, National Institute of Agricultural Sciences) ;
  • Hui-Seon, Kim (Department of Agro-Food Safety, National Institute of Agricultural Sciences) ;
  • Mi-jin, Kim (Department of Agro-Food Safety, National Institute of Agricultural Sciences) ;
  • Jung-Ok, Woo (Department of Agro-Food Safety, National Institute of Agricultural Sciences) ;
  • Ho-yang, Choi (Department of Agro-Food Safety, National Institute of Agricultural Sciences) ;
  • Sung-Chul, Kim (Department of Bio-Environmental Chemistry, Chungnam National University)
  • Received : 2022.10.21
  • Accepted : 2022.11.21
  • Published : 2022.12.31

Abstract

In this study, we sought to identify a soil stabilizer that can be applied to paddy fields vulnerable to arsenic (As) pollution. To this end, we conducted a pot experiment in which we evaluated the effects of different stabilizers on the bioavailability of As in paddy soil. As candidate stabilizers, we assessed calcium superphosphate (CSP), sulfur, and steel slag, which were applied at the rates of 0.7 and 1.4, 0.1 and 0.2, and 7.0 and 14.0 Ma ha-1, respectively. On day 67 after rice transplantation, we detected significantly lower concentrations of As in the solutions of paddy soil treated with 1.4 Ma ha-1 CSP (96.9 ㎍ L-1) and 0.2 Ma ha-1 sulfur (207.2 ㎍ L-1) compared with the As concentrations in control (314.5 ㎍ L-1) and steel slag-treated (268.6-342.4 ㎍ L-1) soil. Compared with the As concentrations in control brown rice (0.16 mg kg-1), concentrations in brown rice were lowest in the pots treated with 1.4 Ma ha-1 CSP (0.09 mg kg-1). Furthermore, in response to CSP treatments, we detected increases in the weight of rice grains (50.0-50.4 g/pot) compared with the control (40.4 g/pot) and other treatments (26.9-48.1 g/pot), which we speculate could be attributed to the reduction in As toxicity to rice owing to a decline in soil solution As contents and the fertilization effect of the CSP treatment. Collectively, our findings indicate a high-level application of CSP (1.4 Ma ha-1) to paddy soil has a comparatively beneficial effect in mitigating the bioavailability of As.

안정화제(과인산석회, 황 및 제강슬래그) 처리가 논토양 내 비소의 생물유효도에 미치는 영향을 비교, 검증하기 위한 포트실험을 수행하였으며 비소 오염에 취약한 농경지에 활용할 수 있는 안정화제를 선발하고자 하였다. 안정화제 처리는 0.71 Mg ha-1 (과인산석회), 0.1 Mg ha-1 (황) 및 7.0 Mg ha-1(제강슬래그)를 기준량으로 각각 기준량과 2배량으로 처리하였다. 벼 이앙 67일 후(유수형성기)의 과석 2배량과 황 2배량 처리구의 토양용액 중 비소의 평균 농도는 각각 96.9 및 207.2 ㎍ L-1로 대조구(314.5 ㎍ L-1) 및 제강슬래그 처리구(268.6-342.4 ㎍ L-1)의 36.1-60.5% 수준으로 유의하게 낮았다. 현미의 비소 평균 농도는 대조구의 0.16 mg kg-1에 비해 과석 2배량 처리에서 0.09 mg kg-1으로 가장 낮았으나 유의차는 나타나지 않았으며, 본 실험 조건에서 벼 뿌리의 iron plaque 내 비소 격리는 비소의 생물유효도를 결정하는 주요 인자가 아닌 것으로 판단되었다. 안정화제 처리에 따른 벼 생육의 통계적 유의차는 관찰되지 않았으나 과석 처리구 벼의 평균 정조중은 50.0-50.4 g/pot로 대조구의 40.4 g/pot, 황 및 제강슬래그 처리구의 26.9-48.1 g/pot에 비해 높은 경향이었다. 이는 과석 처리구의 유수형성기 토양용액 중 비소의 농도가 황 및 제강슬래그 처리구의 46.8-66.4% 수준으로 유의하게 낮았음을 고려할 때 과석의 비료 효과뿐만 아니라 비소의 생물유효도 감소에 따라 벼에 대한 비소의 독성이 감소한 결과로 판단되었다. 토양용액 중 비소의 농도, 벼 생육 등을 종합적으로 고려할 때 과석 과량 처리(1.4 Mg ha-1)에서 상대적으로 양호한 비소의 생물유효도 감소 결과를 보였다.

Keywords

Acknowledgement

This work was supported by the Rural Development Administration of Korea (Project-PJ 01597802).

References

  1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 100: 11-465
  2. ATSDR (Agency for Toxic Substances and Disease Registry) (2019) ATSDR's substance priority list. https://www.atsdr.cdc.gov/spl/index.html#2019spl Assessed 14 September 2022
  3. Halder D, Biswas A, Slejkovec Z, Chatterjee D, Nriagu J, Jacks G, Bhattacharya P (2014) Arsenic species in raw and cooked rice: implications for human health in rural Bengal. Sci Total Environ 497: 200-208. doi: 10.1016/j.scitotenv.2014.07.075
  4. Sanchez TR, Perzanowski M, Graziano JH (2016) Inorganic arsenic and respiratory health, from early life exposure to sex-specific effects: a systematic review. Environ Res 147: 537-555. doi: 10.1016/j.envres.2016.02.009
  5. Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in groundwater of West Bengal, India: a review of human health risks and assessment of possible intervention options. Sci Total Environ 612: 148-169. doi: 10.1016/j.scitotenv.2017.08.216
  6. Jiang W, Hou Q, Yang Z, Zhong C, Zheng G, Yang Z, Li J (2014) Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ Pollut 188: 159-165. doi: 10.1016/j.envpol.2014.02.014
  7. Yun SW, Yu C, Yoon YC, Kang DH, Lee SY, Son J, Kim DH (2016) Leaching behavior of arsenic and heavy-metals and treatment effects of steel refining slag in a reducing environment of paddy soil. J Korean Soc Agric Eng 58: 29-38. doi: 10.5389/KSAE.2016.58.3.029
  8. Son JH, Roh H, Lee SY, Kim SK, Kim GH, Park JK, Yang JK, Chang YY (2009) Stabilization of heavy metal contaminated paddy soils near abandoned mine with steel slag and CaO. J Soil Groundwater Environ 14: 78-86
  9. Lim JT, Kim YS, Park JJ, Lee CI, Hyun KH, Kwon BS, Kim HJ (2000) Residual effects of basic oxygen furnace slag as soil conditioner in the rice paddy field. Korean J Soil Sci Fert 33: 205-211
  10. Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 29: 241-251. doi: 10.1016/j.jhazmat.2015.06.008
  11. Tang X, Li L, Wu C, Khan MI, Manzoor M, Zou L, Shi J (2020) The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers. Environ Pollut 264: 114679. doi: 10.1016/j.envpol.2020.114679
  12. Burton ED, Johnston SG, Kocar BD (2014) Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Environ Sci Technol 48: 13660-13667. doi: 10.1021/es503963k
  13. Mukhopadhyay S, Hashim MA, Allen M, Sen Gupta B (2015) Arsenic removal from soil with high iron content using a natural surfactant and phosphate. Int J Environ Sci Technol 12: 617-632. doi: 10.1007/s13762-013-0441-7
  14. Wasay SA, Parker W, Geel PV, Barrington S, Tokunaga S (2000) Arsenic pollution of a loam soil: retention form and decontamination. Soil Sediment Contam 9: 51-64. doi: 10.1080/10588330091134194
  15. Talukder ASMHM, Meisner CA, Sarkar MAR, Islam MS, Sayre KD, Duxbury JM, Lauren JG (2012) Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil-water system: II. Arsenic uptake. Ecotoxicol Environ Saf 80: 145-151. doi: 10.1016/j.ecoenv.2012.02.020
  16. Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128: 1120-1128. doi: 10.1104/pp.010733
  17. Tu S, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50: 243-251. doi: 10.1016/S0098-8472(03)00040-6
  18. Lee CH, Wu CH, Syu CH, Jiang PY, Huang CC, Lee DY (2016) Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma 270: 60-67. doi: 10.1016/j.geoderma.2016.01.003
  19. National Institute of Agricultural Sciences (NIAS) (2017) Standard of fertilizer usage for crop. National Institute of Agricultural Sciences, Wanju, Korea
  20. National Institute of Agricultural Sciences (NIAS) (2010) Methods of soil chemical analysis. National Institute of Agricultural Sciences, Suwon, Korea
  21. Ministry of Environment (MOE) (2010) Official methods of soil analysis for polluted soils. Ministry of Environment, Gwacheon, Korea
  22. Ministry of Environment (MOE) (1999) Official methods of soil analysis for polluted soils. Ministry of Environment, Gwacheon, Korea
  23. Rural Development Administration (RDA) (2012) Research, survey and analysis standard for agricultural science and technology. Rural Development Administration, Suwon, Korea
  24. Taylor GJ, Crowder AA (1983) Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am J Bot 70: 1254-1257. doi: 10.1002/j.1537-2197.1983.tb12474.x
  25. Yang YP, Zhang HM, Yuan HY, Duan GL, Jin DC, Zhao FJ, Zhu YG (2018) Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environ Pollut 236: 598-608. doi: 10.1016/j.envpol.2018.01.099
  26. Xu X, Wang P, Zhang J, Chen C, Wang, Z, Kopittke PM, Kretzschmar R, Zhao FJ (2019) Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environ Pollut 251: 952-960. doi: 10.1016/j.envpol.2019.05.086
  27. Tiberg C, Sjostedt C, Eriksson AK, Klysubun W, Gustafsson JP (2020) Phosphate competition with arsenate on poorly crystalline iron and aluminum (hydr) oxide mixtures. Chemosphere 255: 126937. doi: 10.1016/j.chemosphere.2020.126937
  28. Wu J, Liang J, Bjorn LO, Li J, Shu W, Wang Y (2022) Phosphorus-arsenic interaction in the 'soil-plant-microbe'system and its influence on arsenic pollution. Sci Total Environ 802: 149796. doi: 10.1016/j.scitotenv.2021.149796
  29. Neupane G, Donahoe RJ (2013) Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl Geochem 28: 145-154. doi: 10.1016/j.apgeochem.2012.10.011
  30. Williams PN, Zhang H, Davison W, Meharg AA, Hossain M, Norton GJ, Islam MR (2011) Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ Sci Technol 45(14): 6080-6087. doi: 10.1021/es2003765
  31. Sahoo PK, Kim K (2013) A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosciences Journal 17(1): 107-122. doi: 10.1007/s12303-013-0004-4
  32. Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG, Meisner CA, Ahmed ZU, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317: 31-39. doi: 10.1007/s11104-008-9786-y
  33. Fan J, Xia X, Hu Z, Ziadi N, Liu C (2013) Excessive sulfur supply reduces arsenic accumulation in brown rice. Plant Soil Environ 59: 169-174 https://doi.org/10.17221/882/2012-pse
  34. Syu CH, Lee CH, Jiang PY, Chen MK, Lee DY (2014) Comparison of As sequestration in iron plaque and uptake by different genotypes of rice plants grown in As-contaminated paddy soils. Plant Soil 374: 411-422. doi: 10.1007/s11104-013-1893-8
  35. Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147: 387-393. doi: 10.1016/j.envpol.2006.06.014